Skip to main content
Log in

Effect of increased intraabdominal pressure on cardiac output and tissue blood flow assessed by color-labeled microspheres in the pig

  • Original Articles
  • Published:
Surgical Endoscopy Aims and scope Submit manuscript

Abstract

Background

Studies of the hemodynamic effects associated with the pneumoperitoneum have had controversial results. We set out to investigate the effect of increased intraabdominal pressure (IAP) on cardiac output and tissue blood flow in various intraabdominal and extraabdominal organs using the color-labeled microsphere (CLM) technique.

Methods

IAP was induced by CO2 insufflation in anesthetized pigs; 0,5, and 10 mmHg was used in the low-pressure group and 0, 15, and 24 mmHg in the high-pressure group. Tissue blood flow (ml.min−1.g−1) and cardiac output (CO) (ml/min) were determined by the CLM technique.

Results

CO decreased at IAP≥15 mmHg. Arterial PaCO2 and hydrogen ion concentration increased in response to all levels of IAP. Arterial PaO2, oxygen saturation, and bicarbonate ion concentration remained unchanged. Low IAP did not influence tissue blood flows in most of the organs. However, in the spleen, pancreas, esophagus, and gastric mucosal specimens, tissue blood flow was significantly decreased at 24 mmHg.

Conclusion

The level of IAP used in current practice (10–12 12 mmHg) appears to be safe with regard to hemodynamic variables and tissues blood flow; however, higher levels may induce a decrease in cardiac output and tissue blood flow.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Abu-Amarah I, Ajikobi DO, Bachelard H, Cupples WA, Salevsky FC (1998)Responses of mesenteric and renal blood flow dynamics to acute denervation in anesthetized rats. Am J Physiol 275: R1543-R1552

    CAS  PubMed  Google Scholar 

  2. Baird JE, Granger R, Klein R, Warriner CB, Phang PT (1999) The effects of retroperitoneal carbon dioxide insufflation on hemodynamics and arterial carbon dioxide. Am J Surg 177: 164–166

    Article  CAS  PubMed  Google Scholar 

  3. Bannenherg JJG, Rademaker BMP, Froeling FMJA, Meijer DW (1997) Hemodynamics during laparoscopic extra- and intraperitoneal insufflation: an experimental study. Surg Endosc 11: 911–914 DOI: 10.1007/s004649900485

    Article  Google Scholar 

  4. Bauer R, Walter B, Wurker E, Kluge H, Zwiener U (1996) Colored microsphere technique as a new method for quantitative-multiple estimation of regional hepatic and portal blood flow. Exp Toxicol Pathol 48: 415–420

    Article  CAS  PubMed  Google Scholar 

  5. Berguer R, Cornelius T, Dalton M (1997) The optimum pneumoperitoneum pressure for laparoscopic surgery in the rat model: a detailed cardiorespiratory study. Surg Endosc 11: 915–918 DOI: 10.1007/ s004649900486

    Article  CAS  PubMed  Google Scholar 

  6. Blobner M, Bogdanski R, Kochs E, Henke J, Findels A, Jelen-Esselborn S (1998) Effects of intra-abdominally insufflated carbon dioxide and elevated intra-abdominal pressure on splanchnic circulation: an experimental study in pigs. Anesthesiology 89: 475–482

    Article  CAS  PubMed  Google Scholar 

  7. Caldwell CB, Ricotta JJ (1987) Changes in visceral blood flow with elevated intraabdominal pressure. J Surg Res 43: 14–20

    Article  CAS  PubMed  Google Scholar 

  8. Chiu AW, Chang LS, Bitkett DH, Babayan RK (1995) The impact of pneumoperitoneum, pneumoretroperitoneum, and gasless laparoscopy on the systemic and renal hemodynamics. J Am Coll Surg 181: 397–406

    CAS  PubMed  Google Scholar 

  9. Chiu AW, Azadzoi KM, Hatzichristou DG, Siroky MB, Krane RJ, Babayan RK (1994) Effects of intra-abdominal pressure on renal tissue perfusion during laparoseopy. J Endourol 8: 99–103

    Article  CAS  PubMed  Google Scholar 

  10. Detweiler DK (1984) Regional and fetal circulations., In: Swenson MJ (ed) Dukes’ physiology of domestic animals. Vail-Ballou Press, London, pp 192–206

    Google Scholar 

  11. Diamant M, Benumof JL, Saidman LJ (1978) Hemodynamics of increased intra-abdominal pressure: interaction with hypovolemia and halothane anesthesia. Anesthesiology 48: 23–27

    Article  CAS  PubMed  Google Scholar 

  12. Diebel LN, Wilson RF, Dulchavsky SA, Saxe J (1992) Effect of increased intra-abdominal pressure on hepatic arterial, portal venous, and hepatic microcirculatory blood flow. J Trauma 33: 279–283

    Article  CAS  PubMed  Google Scholar 

  13. Heyman MA, Payne BD, Hoffman JIE, Rudolph AM (1977) Blood flow measurements with radionuclide labeled particles. Prog Cardiovasc Dis 20: 619–625

    Google Scholar 

  14. Jakimowicz J, Stultiens G, Smulders F (1998) Laparoscopic insufflation of the abdomen reduces portal venous flow. Surg Endosc 12: 129–132 DOI: 10.1007/s004649900612

    Article  CAS  PubMed  Google Scholar 

  15. Junghans T, Bohm B, Grundel K, Schwenk W, Muller JM (1997) Does pneumoperitoneum with different gases, body positions, and intraperitoneal pressures influence renal and hepatic blood flow? Surgery 121: 206–211

    Article  CAS  PubMed  Google Scholar 

  16. Katircioglu SF, Atalay F, Keskin A, Saritas Z, Bostanoglu S, Yucel D, Kose K (1998) Myocardial hemodynamic and metabolic changes during abdominal insufflation with carbon dioxide. Eur Surg Res 30: 205–213

    Article  CAS  PubMed  Google Scholar 

  17. Klopfenstein CE, Morel DR, Clergue F, Pastor CM (1998) Effects of abdominal CO2, insufflation and changes of position on hepatic blood flow in anesthetized pigs. Am J Physiol 275: H900-H905

    CAS  PubMed  Google Scholar 

  18. Kobayashi N, Kobayashi K, Kouno K, Horinaka S, Yagi S (1994) Effects of intra-atrial injection of colored microspheres on systemic hemodynamics and regional blood flow in rats. Am J Physiol 266: H1910-H1917

    CAS  PubMed  Google Scholar 

  19. Kotzampassi K, Kapanidis N, Kazamias P, Eleftheriadis E (1993) Hemodynamic events in the peritoneal environment during pneumoperitoneum in dogs. Surg Endosc. 7: 494–499

    Article  CAS  PubMed  Google Scholar 

  20. Leighton TA, Liu SY, Bongard FS (1993) Comparative cardiopulmonary effects of carbon dioxide versus helium pneumoperitoneum. Surgery 113: 527–531

    CAS  PubMed  Google Scholar 

  21. Lindberg F, Bergqvist D, Rasmussen I, Haglund U (1997) Hemodynamic changes in the inferior caval vein during pneumoperitoneum: an experimental study in pigs. Surg Endosc, 11: 431–437 DOI: 10.1007/s004649900384

    Article  CAS  PubMed  Google Scholar 

  22. Lister DR, Rudston-Brown B, Warriner CB, McEwen J, Chan M, Walley KR (1994) Carbon dioxide absorbtion is not linearly related to intra-peritoneal carbon dioxide insufflation pressure in pigs. Anesthesiology 80: 129–136

    Article  CAS  PubMed  Google Scholar 

  23. Mikami O, Fujise K, Matsumoto S, Shingu K, Ashida M, Natsuda T (1998) High intra-abdominal pressure increases plasma catecholamine concentrations during pneumoperitoneum for laparoscopic procedures. Arch Surg 133: 39–43

    Article  CAS  PubMed  Google Scholar 

  24. Odeberg S, Ljungqvist O, Sollevi A (1998) Pneumoperitoneum for laparoscopic cholecystectomy is not associated with compromised splanchnic circulation. Eur J Surg 164: 843–848

    Article  CAS  PubMed  Google Scholar 

  25. Ogihara Y, Isshiki A, Kindscher JD, Goto H (1999) Abdominal wall lift versus carbon dioxide insufflation for laparoscopic resection of ovarian tumors. J Clin Anesth 11: 406–412

    Article  CAS  PubMed  Google Scholar 

  26. O’Leary E, Hubbard K, Tormey W, Cunningham AJ (1996) Laparoscopic cholecystectomy: hemodynamic and neuroendocrine responses after pneumoperitoneum and changes in position. Br J Anaesth 76: 640–644

    Article  PubMed  Google Scholar 

  27. Ortega AE, Richman MF, Hernandez M, Peters JH, Anthone GJ, Azen S, Beart RW Jr (1996) Inferior vena caval blood flow and cardiac hemodynamics during carbon dioxide pneumoperitoneum. Surg Endosc 10: 920–924

    Article  CAS  PubMed  Google Scholar 

  28. Rasmussen JP, Dauchot PJ, DePalma RG, Sorensen B, Regula G, Anton AH, Gravenstein JS (1978) Cardiac function and hypercarbia. Arch Surg 113: 1196–1200

    Article  CAS  PubMed  Google Scholar 

  29. Sala-Blanch X, Fontanals J, Martinez-Palli G, Taura P, Delgado S Bosch J, Lacy AM, Visa J (1998) Effects of carbon dioxide vs helium pneumoperitoneum on hepatic blood flow. Surg Endosc 12: 1121–1125 DOI: 10.1007/s004649900797

    Article  CAS  PubMed  Google Scholar 

  30. Schilling MK, Redaelli C, Krahenbuhl L, Signer C, Buchler MW (1997) Splanchnic microcirculatory changes during CO2 laparoscopy. J Am Coll Surg 184: 378–382

    CAS  PubMed  Google Scholar 

  31. Shuto K, Kitano S, Yoshida T, Bandoh T, Mitarai Y, Kobayashi M (1995) Hemodynamic and arterial blood gas changes during carbon dioxide and helium pneumoperitoneum in pigs. Surg Endosc 9: 1173–1178

    CAS  PubMed  Google Scholar 

  32. Tranquilli WJ, Parks CM, Thurmon JC, Benson GJ, Koritz GD, Manohar M, Theodorakis MC (1982) Organ blood flow and distribution of cardiac output in nonanesthetized swine. Am J Vet Res 43: 895–897

    CAS  PubMed  Google Scholar 

  33. Wittgen CM, Andrus CH, Fitzgerald SD, Baudendistel LJ, Dahms TE, Kaminski DL (1991) Analysis of hemodynamic and ventilatory effects of laparoscopic cholecystectomy. Arch Surg 126: 997–1001

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Online publication: 12 December 2000

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yavuz, Y., Rønning, K., Lyng, O. et al. Effect of increased intraabdominal pressure on cardiac output and tissue blood flow assessed by color-labeled microspheres in the pig. Surg Endosc 15, 149–155 (2001). https://doi.org/10.1007/s004640000336

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s004640000336

Key words

Navigation