Skip to main content

Advertisement

Log in

Tensile strength and failure load of sutures for robotic surgery

  • Published:
Surgical Endoscopy Aims and scope Submit manuscript

Abstract

Background

Robotic surgical platforms have seen increased use among minimally invasive gastrointestinal surgeons (von Fraunhofer et al. in J Biomed Mater Res 19(5):595–600, 1985. doi:10.1002/jbm.820190511). However, these systems still suffer from lack of haptic feedback, which results in exertion of excessive force, often leading to suture failures (Barbash et al. in Ann Surg 259(1):1–6, 2014. doi:10.1097/SLA.0b013e3182a5c8b8). This work catalogs tensile strength and failure load among commonly used sutures in an effort to prevent robotic surgical consoles from exceeding identified thresholds. Trials were thus conducted on common sutures varying in material type, gauge size, rate of pulling force, and method of applied force.

Methods

Polydioxanone, Silk, Vicryl, and Prolene, gauges 5-0 to 1-0, were pulled till failure using a commercial mechanical testing system. 2-0 and 3-0 sutures were further tested for the effect of pull rate on failure load at rates of 50, 200, and 400 mm/min. 3-0 sutures were also pulled till failure using a da Vinci robotic surgical system in unlooped, looped, and at the needle body arrangements.

Results

Generally, Vicryl and PDS sutures had the highest mechanical strength (47–179 kN/cm2), while Silk had the lowest (40–106 kN/cm2). Larger diameter sutures withstand higher total force, but finer gauges consistently show higher force per unit area. The difference between material types becomes increasingly significant as the diameters decrease. Comparisons of identical suture materials and gauges show 27–50% improvement in the tensile strength over data obtained in 1985 (Ballantyne in Surg Endosc Other Interv Tech 16(10):1389–1402, 2002. doi:10.1007/s00464-001-8283-7). No significant differences were observed when sutures were pulled at different rates. Reduction in suture strength appeared to be strongly affected by the technique used to manipulate the suture.

Conclusions

Availability of suture tensile strength and failure load data will help define software safety protocols for alerting a surgeon prior to suture failure during robotic surgery. Awareness of suture strength weakening with direct instrument manipulation may lead to the development of better techniques to further reduce intraoperative suture breakage.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. von Fraunhofer JA, Storey RS, Stone IK, Masterson BJ (1985) Tensile strength of suture materials. J Biomed Mater Res 19(5):595–600. doi:10.1002/jbm.820190511

    Article  Google Scholar 

  2. Barbash GI, Friedman B, Glied SA, Steiner CA (2014) Factors associated with adoption of robotic surgical technology in US hospitals and relationship to radical prostatectomy procedure volume. Ann Surg 259(1):1–6. doi:10.1097/SLA.0b013e3182a5c8b8

    Article  PubMed  Google Scholar 

  3. Ballantyne GH (2002) Robotic surgery, telerobotic surgery, telepresence, and telementoring: review of early clinical results. Surg Endosc Other Interv Tech 16(10):1389–1402. doi:10.1007/s00464-001-8283-7

    Article  CAS  Google Scholar 

  4. Marescaux J, Leroy J, Gagner M et al (2001) Transatlantic robot-assisted telesurgery. Nature 413(6854):379–380. doi:10.1038/35096636

    Article  CAS  PubMed  Google Scholar 

  5. Moorthy K, Munz Y, Dosis A et al (2004) Dexterity enhancement with robotic surgery. Surg Endosc 18(5):790–795. doi:10.1007/s00464-003-8922-2

    Article  CAS  PubMed  Google Scholar 

  6. Munz Y, Moorthy K, Dosis A et al (2004) The benefits of stereoscopic vision in robotic-assisted performance on bench models. Surg Endosc 18(4):611–616. doi:10.1007/s00464-003-9017-9

    Article  CAS  PubMed  Google Scholar 

  7. Satava RM (2002) Surgical robotics: the early chronicles: a personal historical perspective. Surg Laparosc Endosc Percutan Tech 12(1):6–16. doi:10.1097/00129689-200202000-00002

    Article  PubMed  Google Scholar 

  8. Schilling DR, Da Vinci Robotic surgery system performing over 250,000 surgeries a year. http://www.industrytap.com/da-vinci-robotic-surgery-system-performing-over-250000-surgeries-a-year/3697/. Published 2013. Accessed 1 Jan 2015

  9. Bhatia V, Tandon RK (2005) Stress and the gastrointestinal tract. J Gastroenterol Hepatol 20(3):332–339. doi:10.1111/j.1440-1746.2004.03508.x

    Article  PubMed  Google Scholar 

  10. Cartmill JA, Shakeshaft AJ, Walsh WR, Martin CJ (1999) High pressures are generated at the tip of laparoscopic graspers. ANZ J Surg 69(2):127–130. doi:10.1046/j.1440-1622.1999.01496.x

    Article  CAS  Google Scholar 

  11. Marucci DD, Shakeshaft AJ, Cartmill JA, Cox MR, Adams SG, Martin CJ (2000) Grasper trauma during laparoscopic cholecystectomy. Aust N Z J Surg 70(8):578–581

    Article  CAS  PubMed  Google Scholar 

  12. De S, Rosen J, Dagan A, Hannaford B, Swanson P, Sinanan M (2007) Assessment of tissue damage due to mechanical stresses. Int J Rob Res 26(11–12):1159–1171. doi:10.1177/0278364907082847

    Article  Google Scholar 

  13. Heijnsdijk EAM, van der Voort M, de Visser H, Dankelman J, Gouma DJ (2003) Inter- and intraindividual variabilities of perforation forces of human and pig bowel tissue. Surg Endosc 17(12):1923–1926. doi:10.1007/s00464-003-9002-3

    Article  CAS  PubMed  Google Scholar 

  14. Akinbiyi T, Reiley CE, Saha S et al (2006) Dynamic augmented reality for sensory substitution in robot-assisted surgical systems. Annu Int Conf IEEE Eng Med Biol Proc. doi:10.1109/IEMBS.2006.259707

    Google Scholar 

  15. Diks J, Nio D, Linsen MA, Rauwerda JA, Wisselink W (2007) Suture damage during robot-assisted vascular surgery: is it an issue? Surg Laparosc Endosc Percutan Tech 17(6):524–527. doi:10.1097/SLE.0b013e318150e590

    Article  PubMed  Google Scholar 

  16. Gettman MT, Neururer R, Bartsch G, Peschel R (2002) Anderson–Hynes dismembered pyeloplasty performed using the da Vinci robotic system. Urology 60(3):509–513. doi:10.1016/S0090-4295(02)01761-2

    Article  PubMed  Google Scholar 

  17. Reiley CE, Akinbiyi T, Burschka D, Chang DC, Okamura AM, Yuh DD (2008) Effects of visual force feedback on robot-assisted surgical task performance. J Thorac Cardiovasc Surg 135(1):196–202. doi:10.1016/j.jtcvs.2007.08.043

    Article  PubMed  PubMed Central  Google Scholar 

  18. Cundy TP, Gattas NE, Yang G-Z, Darzi A, Najmaldin AS (2014) Experience related factors compensate for haptic loss in robot-assisted laparoscopic surgery. J Endourol. doi:10.1089/end.2013.0671

    PubMed  Google Scholar 

  19. Bethea BT, Okamura AM, Kitagawa M et al (2004) Application of haptic feedback to robotic surgery. J Laparoendosc Adv Surg Tech A 14(3):191–195. doi:10.1089/1092642041255441

    Article  PubMed  PubMed Central  Google Scholar 

  20. Martell J, Elmer T, Gopalsami N, Park YS (2011) Visual measurement of suture strain for robotic surgery. Comput Math Methods Med 2011:1–9. doi:10.1155/2011/879086

    Article  Google Scholar 

  21. Paydar OH, Wottawa CR, Fan RE et al (2012) Fabrication of a thin-film capacitive force sensor array for tactile feedback in robotic surgery. In: Proceedings of the annual international conference of the IEEE engineering in medicine and biology society, EMBS, pp 2355–2358. doi:10.1109/EMBC.2012.6346436

  22. Karabulut R, Sonmez K, Turkyilmaz Z, Bagbanci B, Basaklar AC, Kale N (2010) An in vitro and in vivo evaluation of tensile strength and durability of seven suture materials in various pH and different conditions: an experimental study in rats. Indian J Surg 72(5):386–390. doi:10.1007/s12262-010-0158-5

    Article  PubMed  PubMed Central  Google Scholar 

  23. Kim JC, Lee YK, Lim BS, Rhee SH, Yang HC (2007) Comparison of tensile and knot security properties of surgical sutures. J Mater Sci Mater Med 18(12):2363–2369. doi:10.1007/s10856-007-3114-6

    Article  CAS  PubMed  Google Scholar 

  24. Khiste SV, Ranganath V, Nichani AS (2013) Evaluation of tensile strength of surgical synthetic absorbable suture materials: an in vitro study. J Periodontal Implant Sci 43(3):130–135. doi:10.5051/jpis.2013.43.3.130

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Hirano Y, Ishikawa N, Watanabe G (2010) Suture damage after grasping with EndoWrist of the da Vinci Surgical System. Minim Invasive Ther Allied Technol 19(4):203–206. doi:10.3109/13645706.2010.496951

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

This research was partially supported by the National Institute of Biomedical Imaging and Bioengineering of the National Institutes of Health under Award Number R01EB019473-01. We thank our colleagues who provided insight and expertise that greatly assisted the research.

Disclosures

Dr. Erik Duston is on Scientific Advisory board of Titan Medical. Ahmad Abiri, Dr. Omeed Paydar, Anna Tao, Megan LaRocca, Kang Liu, Dr. Bradley Genovese, Dr. Robert Candler, and Dr. Warren Grundfest have nothing to disclose.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ahmad Abiri.

Appendix

Appendix

See Tables 5, 6, 7 and 8.

Table 5 Statistical analysis of Table 1 failure load data using t test
Table 6 Statistical analysis of Table 1 tensile strength data using t test
Table 7 Statistical analysis of Table 2 data using t test
Table 8 Statistical analysis of Table 4 data using t test

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abiri, A., Paydar, O., Tao, A. et al. Tensile strength and failure load of sutures for robotic surgery. Surg Endosc 31, 3258–3270 (2017). https://doi.org/10.1007/s00464-016-5356-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00464-016-5356-1

Keywords

Navigation