Skip to main content

Advertisement

Log in

Intra-operative disruptions, surgeon’s mental workload, and technical performance in a full-scale simulated procedure

  • Published:
Surgical Endoscopy Aims and scope Submit manuscript

Abstract

Background and aim

Surgical flow disruptions occur frequently and jeopardize perioperative care and surgical performance. So far, insights into subjective and cognitive implications of intra-operative disruptions for surgeons and inherent consequences for performance are inconsistent. This study aimed to investigate the effect of surgical flow disruption on surgeon’s intra-operative workload and technical performance.

Methods

In a full-scale OR simulation, 19 surgeons were randomly allocated to either of the two disruption scenarios (telephone call vs. patient discomfort). Using a mixed virtual reality simulator with a computerized, high-fidelity mannequin, all surgeons were trained in performing a vertebroplasty procedure and subsequently performed such a procedure under experimental conditions. Standardized measures on subjective workload and technical performance (trocar positioning deviation from expert-defined standard, number, and duration of X-ray acquisitions) were collected.

Results

Intra-operative workload during simulated disruption scenarios was significantly higher compared to training sessions (p < .01). Surgeons in the telephone call scenario experienced significantly more distraction compared to their colleagues in the patient discomfort scenario (p < .05). However, workload tended to be increased in surgeons who coped with distractions due to patient discomfort. Technical performance was not significantly different between both disruption scenarios. We found a significant association between surgeons’ intra-operative workload and technical performance such that surgeons with increased mental workload tended to perform worse (β = .55, p = .04).

Conclusions

Surgical flow disruptions affect surgeons’ intra-operative workload. Increased mental workload was associated with inferior technical performance. Our simulation-based findings emphasize the need to establish smooth surgical flow which is characterized by a low level of process deviations and disruptions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Rieger A, Fenger S, Neubert S, Weippert M, Kreuzfeld S, Stoll R (2014) Psychophysical workload in the operating room: primary surgeon versus assistant. Surg Endosc. doi:10.1007/s00464-014-3899-6

    PubMed Central  Google Scholar 

  2. Wallston KA, Slagle JM, Speroff T, Nwosu S, Crimin K, Feurer ID, Boettcher B, Weinger MB (2014) Operating room clinicians’ ratings of workload: a vignette simulation study. J Patient Saf 10(2):95–100

    Article  PubMed  Google Scholar 

  3. Weinger MB, Reddy SB, Slagle JM (2004) Multiple measures of anesthesia workload during teaching and nonteaching cases. Anesth Analg 98(5):1419–1425

    Article  PubMed  Google Scholar 

  4. Rieger A, Stoll R, Kreuzfeld S, Behrens K, Weippert M (2014) Heart rate and heart rate variability as indirect markers of surgeons’ intraoperative stress. Int Arch Occup Environ Health 87(2):165–174

    Article  PubMed  Google Scholar 

  5. Wilson MR, Poolton JM, Malhotra N, Ngo K, Bright E, Masters RS (2011) Development and validation of a surgical workload measure: the surgery task load index (SURG-TLX). World J Surg 35(9):1961–1969

    Article  PubMed Central  PubMed  Google Scholar 

  6. Weigl M, Antoniadis S, Chiapponi C, Bruns C, Sevdalis N (2014) The impact of intra-operative interruptions on surgeons’ perceived workload: an observational study in elective general and orthopedic surgery. Surg Endosc. doi:10.1007/s00464-014-3668-6

    PubMed  Google Scholar 

  7. Zheng B, Cassera MA, Martinec DV, Spaun GO, Swanstrom LL (2010) Measuring mental workload during the performance of advanced laparoscopic tasks. Surg Endosc 24(1):45–50. doi:10.1007/s00464-009-0522-3

    Article  PubMed  Google Scholar 

  8. Wiegmann DA, ElBardissi AW, Dearani JA, Daly RC, Sundt TMI (2007) Disruptions in surgical flow and their relationship to surgical errors: an exploratory investigation. Surgery 142(5):658–665. doi:10.1016/j.surg.2007.07.034

    Article  PubMed  Google Scholar 

  9. Parker SH, Laviana A, Wadhera R, Wiegmann D, Sundt T III (2010) Development and evaluation of an observational tool for assessing surgical flow disruptions and their impact on surgical performance. World J Surg 34(2):353–361. doi:10.1007/s00268-009-0312-z

    Article  PubMed  Google Scholar 

  10. Healey AN, Primus CP, Koutantji M (2007) Quantifying distraction and interruption in urological surgery. Qual Saf Health Care 16(2):135–139. doi:10.1136/qshc.2006.019711

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  11. Shouhed D, Blocker R, Gangi A, Ley E, Blaha J, Margulies D, Wiegmann DA, Starnes B, Karl C, Karl R, Gewertz BL, Catchpole KR (2014) Flow disruptions during trauma care. World J Surg 38(2):314–321. doi:10.1007/s00268-013-2306-0

    Article  PubMed  Google Scholar 

  12. Henrickson SE, Wadhera RK, Elbardissi AW, Wiegmann DA, Sundt TM 3rd (2009) Development and pilot evaluation of a preoperative briefing protocol for cardiovascular surgery. J Am Coll Surg 208(6):1115–1123. doi:10.1016/j.jamcollsurg.2009.01.037

    Article  PubMed Central  PubMed  Google Scholar 

  13. Antoniadis S, Passauer-Baierl S, Baschnegger H, Weigl M (2014) Identification and interference of intraoperative distractions and interruptions in operating rooms. J Surg Res 188(1):21–29. doi:10.1016/j.jss.2013.12.002

    Article  PubMed  Google Scholar 

  14. Sevdalis N, Undre S, McDermott J, Giddie J, Diner L, Smith G (2013) Impact of intraoperative distractions on patient safety: a prospective descriptive study using validated instruments. World J Surg. doi:10.1007/s00268-013-2315-z

    Google Scholar 

  15. Morgan L, Robertson E, Hadi M, Catchpole K, Pickering S, New S, Collins G, McCulloch P (2013) Capturing intraoperative process deviations using a direct observational approach: the glitch method. BMJ Open 3(11):e003519. doi:10.1136/bmjopen-2013-003519

    Article  PubMed Central  PubMed  Google Scholar 

  16. Sevdalis N, Sonal A, Undre S, Vincent CA (2009) Distractions and interruptions in the operating room. In: Flin R, Mitchell L (eds) Safer surgery: distractions and interruptions in the operating room. Ashgate, Farnham, pp 405–419

    Google Scholar 

  17. Feuerbacher RL, Funk KH, Spight DH, Diggs BS, Hunter JG (2012) Realistic distractions and interruptions that impair simulated surgical performance by novice surgeons. Arch Surg 147(11):1026–1030. doi:10.1001/archsurg.2012.1480

    Article  PubMed  Google Scholar 

  18. Wetzel CM, Black SA, Hanna GB, Athanasiou T, Kneebone RL, Nestel D, Wolfe JH, Woloshynowych M (2010) The effects of stress and coping on surgical performance during simulations. Ann Surg 251(1):171–176. doi:10.1097/SLA.0b013e3181b3b2be

    Article  PubMed  Google Scholar 

  19. Sevdalis N, Healey AN, Vincent CA (2007) Distracting communications in the operating theatre. J Eval Clin Pract 13(3):390–394. doi:10.1111/j.1365-2753.2006.00712.x

    Article  PubMed  Google Scholar 

  20. Gillespie BM, Chaboyer W, Fairweather N (2012) Interruptions and miscommunications in surgery: an observational study. AORN J 95(5):576–590. doi:10.1016/j.aorn.2012.02.012

    Article  PubMed  Google Scholar 

  21. Brixey JJ, Robinson DJ, Johnson CW, Johnson TR, Turley JP, Zhang J (2007) A concept analysis of the phenomenon interruption. ANS Adv Nurs Sci 30(1):E26–E42

    Article  PubMed  Google Scholar 

  22. Grundgeiger T, Sanderson P (2009) Interruptions in healthcare: theoretical views. Int J Med Inform 78(5):293–307. doi:10.1016/j.ijmedinf.2008.10.001

    Article  PubMed  Google Scholar 

  23. Wetzel CM, Kneebone RL, Woloshynowych M, Nestel D, Moorthy K, Kidd J, Darzi A (2006) The effects of stress on surgical performance. Am J Surg 191(1):5–10. doi:10.1016/j.amjsurg.2005.08.034

    Article  PubMed  Google Scholar 

  24. Tucker AL, Spear SJ (2006) Operational failures and interruptions in hospital nursing. Health Serv Res 41(3 Pt 1):643–662

    Article  PubMed Central  PubMed  Google Scholar 

  25. Elfering A, Nutzi M, Koch P, Baur H (2014) Workflow interruptions and failed action regulation in surgery personnel. Saf Health Work 5(1):1–6. doi:10.1016/j.shaw.2013.11.001

    Article  PubMed Central  PubMed  Google Scholar 

  26. Sevdalis N, Forrest D, Undre S, Darzi A, Vincent C (2008) Annoyances, disruptions, and interruptions in surgery: the Disruptions in Surgery Index (DiSI). World J Surg 32(8):1643–1650. doi:10.1007/s00268-008-9624-7

    Article  PubMed  Google Scholar 

  27. Kneebone R (2010) Simulation, safety and surgery. Qual Saf Health Care 19(Suppl 3):i47–i52. doi:10.1136/qshc.2010.042424

    Article  PubMed  Google Scholar 

  28. Wucherer P, Stefan P, Abhari K, Fallavollita P, Weigl M, Lazarovici M, Winkler A, Weidert S, Peters T, de Ribaupierre S, Eagleson R, Navab N (2015) Vertebroplasty performance on simulator for 19 surgeons using hierarchical task analysis. IEEE Trans Med Imaging PP(99):1. doi:10.1109/TMI.2015.2389033

    Google Scholar 

  29. Wucherer P, Stefan P, Weidert S, Fallavollita P, Navab N (2013) Development and procedural evaluation of immersive medical simulation environments. In: Barratt D, Cotin S, Fichtinger G, Jannin P, Navab N (eds) Information processing in computer-assisted interventions. Springer, Berlin, Heidelberg, pp 1–10

    Chapter  Google Scholar 

  30. Wucherer P, Stefan P, Weidert S, Fallavollita P, Navab N (2014) Task and crisis analysis during surgical training. Int J Comput Assist Radiol Surg 9(5):758–794. doi:10.1007/s11548-013-0970-z

    Article  PubMed  Google Scholar 

  31. Moorthy K, Munz Y, Adams S, Pandey V, Darzi A (2005) A human factors analysis of technical and team skills among surgical trainees during procedural simulations in a simulated operating theatre. Ann Surg 242(5):631–639. doi:10.1097/01.sla.0000186298.79308.a8

    Article  PubMed Central  PubMed  Google Scholar 

  32. Engelmann CR, Neis JP, Kirschbaum C, Grote G, Ure BM (2014) A noise-reduction program in a pediatric operation theatre is associated with surgeon’s benefits and a reduced rate of complications: a prospective controlled clinical trial. Ann Surg 259(5):1025–1033. doi:10.1097/SLA.0000000000000253

    Article  PubMed  Google Scholar 

  33. Broom MA, Capek AL, Carachi P, Akeroyd MA, Hilditch G (2011) Critical phase distractions in anaesthesia and the sterile cockpit concept. Anaesthesia 66(3):175–179. doi:10.1111/j.1365-2044.2011.06623.x

    Article  CAS  PubMed  Google Scholar 

  34. Engelmann C, Schneider M, Kirschbaum C, Grote G, Dingemann J, Schoof S, Ure BM (2011) Effects of intraoperative breaks on mental and somatic operator fatigue: a randomized clinical trial. Surg Endosc 25(4):1245–1250. doi:10.1007/s00464-010-1350-1

    Article  PubMed  Google Scholar 

  35. Rivera-Rodriguez AJ, Karsh BT (2010) Interruptions and distractions in healthcare: review and reappraisal. Qual Saf Health Care 19(4):304–312. doi:10.1136/qshc.2009.033282

    Article  CAS  PubMed  Google Scholar 

  36. Brixey JJ, Robinson DJ, Turley JP, Zhang J (2010) The roles of MDs and RNs as initiators and recipients of interruptions in workflow. Int J Med Inform 79(6):e109–e115. doi:10.1016/j.ijmedinf.2008.08.007

    Article  PubMed  Google Scholar 

  37. Hsu KE, Man FY, Gizicki RA, Feldman LS, Fried GM (2008) Experienced surgeons can do more than one thing at a time: effect of distraction on performance of a simple laparoscopic and cognitive task by experienced and novice surgeons. Surg Endosc 22(1):196–201. doi:10.1007/s00464-007-9452-0

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The study was funded by the Research and Teaching Program of the Medical Faculty, Munich University (FöFoLE, Grant No. 752) and the Munich Centre for Health Sciences (Mc-Health). We acknowledge Alexander Winkler and Professor Dr. Wolf E. Mutschler for their support in study preparation and data collection. We also gratefully acknowledge Professor Franziska Tschan and Professor Norbert Semmer for their valuable comments on an earlier version.

Disclosures

Matthias Weigl, Philipp Stefan, Kamyar Abhari, Patrick Wucherer, Pascal Fallavollita, Marc Lazarovici, Simon Weidert, Ekkehard Euler, and Ken Catchpole declare that they have no competing interests. The authors also indicate that they have no personal financial relationships relevant to this article to disclose.

Ethical standard

This study was conducted with the approval of the Ethics Committee of the Medical Faculty of the Ludwig-Maximilians-University, Munich (No. 397-13).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Matthias Weigl.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Weigl, M., Stefan, P., Abhari, K. et al. Intra-operative disruptions, surgeon’s mental workload, and technical performance in a full-scale simulated procedure. Surg Endosc 30, 559–566 (2016). https://doi.org/10.1007/s00464-015-4239-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00464-015-4239-1

Keywords

Navigation