Advertisement

Surgical Endoscopy

, Volume 29, Issue 6, pp 1281–1296 | Cite as

A state of the art review and categorization of multi-branched instruments for NOTES and SILS

  • Ewout A. ArkenboutEmail author
  • Paul W. J. Henselmans
  • Filip Jelínek
  • Paul Breedveld
Review

Abstract

Background

Since the advent of Natural Orifice Translumenal Endoscopic Surgery (NOTES) and single incision laparoscopic surgery (SILS), a variety of multitasking platforms have been under development with the objective to allow for bimanual surgical tasks to be performed. These instruments show large differences in construction, enabled degrees of freedom (DOF), and control aspects.

Methods

Through a literature review, the absence of an in-depth analysis and structural comparison of these instruments in the literature is addressed. All the designed and prototyped multitasking platforms are identified and categorized with respect to their actively controlled DOF in their shafts and branches. Additionally, a graphical overview of patents, bench test experiments, and animal and/or human trials performed with each instrument is provided.

Results

The large range of instruments, various actuation strategies, and different direct and indirect control methods implemented in the instruments show that an optimal instrument configuration has not been found yet. Moreover, several questions remain unanswered with respect to which DOF are essential for bimanual tasks and which control methods are best suited for the control of these DOF.

Conclusions

Considering the complexity of the currently prototyped and tested instruments, future NOTES and SILS instrument development will potentially necessitate a reduction of the available DOF to minimize the control complexity, thereby allowing for single surgeon bimanual task execution.

Keywords

General Instruments Human/robotics General Technical 

Notes

Acknowledgments

The research of Ewout A. Arkenbout and Paul Henselmans is supported by the Dutch Technology Foundation STW, which is a part of the Netherlands Organisation for Scientific Research (NWO), and which is partly funded by Ministry of Economic Affairs, Agriculture and Innovation (STW Project 12137). The research of Filip Jelínek was performed within the framework of CTMM, the Center for Translational Molecular Medicine, Project MUSIS (Grant 030-202).

Disclosures

Ir. E. A. Arkenbout, Ir. Paul Henselmans, Ir. Filip Jelínek, and Prof. Dr. Ir. Paul Breedveld have no conflicts of interest or financial ties to disclose.

References

  1. 1.
    Kalloo AN, Singh VK, Jagannath SB, Niiyama H, Hill SL, Vaughn CA, Magee CA, Kantsevoy SV (2004) Flexible transgastric peritoneoscopy: a novel approach to diagnostic and therapeutic interventions in the peritoneal cavity. Gastrointest Endosc 60:114–117PubMedGoogle Scholar
  2. 2.
    Dhumane PW, Diana M, Leroy J, Marescaux J (2011) Minimally invasive single-site surgery for the digestive system: a technological review. J Minimal Access Surg 7:40–51Google Scholar
  3. 3.
    Rattner D, Kalloo A (2006) ASGE/SAGES Working Group on Natural Orifice Translumenal Endoscopic Surgery. October 2005. Surg Endosc 20:329–333PubMedGoogle Scholar
  4. 4.
    Fan C, Dodou D, Breedveld P (2013) Review of manual control methods for handheld maneuverable instruments. Minim Invasive Ther 22:127–135Google Scholar
  5. 5.
    Yeung BP, Gourlay T (2012) A technical review of flexible endoscopic multitasking platforms. Int J Surg 10:345–354PubMedGoogle Scholar
  6. 6.
    Karimyan V, Sodergren M, Clark J, Yang G-Z, Darzi A (2009) Navigation systems and platforms in natural orifice translumenal endoscopic surgery (NOTES). Int J Surg 7:297–304PubMedGoogle Scholar
  7. 7.
    Zhou Y, Ren H, Meng MQH, Tse ZTH, Yu H (2013) Robotics in natural orifice transluminal endoscopic surgery. J Mech Med Biol 13:1350044Google Scholar
  8. 8.
    Swanstrom LL, Whiteford M, Khajanchee Y (2008) Developing essential tools to enable transgastric surgery. Surg Endosc 22:600–604PubMedGoogle Scholar
  9. 9.
    Suzuki N, Hattori A, Tanoue K, Ieiri S, Konishi K, Tomikawa M, Kenmotsu H, Hashizume M (2010) Scorpion shaped endoscopic surgical robot for NOTES and SPS with augmented reality functions. In: Liao H, Edwards PJE, Pan X, Fan Y, Yang G-Z (eds) Medical imaging and augmented reality. Springer, Berlin, pp 541–550Google Scholar
  10. 10.
    Thompson CC, Ryou M, Soper NJ, Hungess ES, Rothstein RI, Swanstrom LL (2009) Evaluation of a manually driven, multitasking platform for complex endoluminal and natural orifice transluminal endoscopic surgery applications. Gastrointest Endosc 70:121–125PubMedGoogle Scholar
  11. 11.
    Astudillo JA, Sporn E, Bachman S, Miedema B, Thaler K (2009) Transgastric cholecystectomy using a prototype endoscope with 2 deflecting working channels (with video). Gastrointest Endosc 69:297–302PubMedGoogle Scholar
  12. 12.
    Olympus (2013) Olympus GIF type 2T160, exceptional dual-channel versatility. Tokyo, JapanGoogle Scholar
  13. 13.
    Horgan S, Thompson K, Talamini M, Ferreres A, Jacobsen G, Spaun G, Cullen J, Swanstrom L (2011) Clinical experience with a multifunctional, flexible surgery system for endolumenal, single-port, and NOTES procedures. Surg Endosc 25:586–592PubMedCentralPubMedGoogle Scholar
  14. 14.
    Pearl JP, Ponsky JL (2008) Natural orifice translumenal endoscopic surgery: a critical review. J Gastrointest Surg Off J Soc Surg Aliment Tract 12:1293–1300Google Scholar
  15. 15.
    von Renteln D, Vassiliou M, Rösch T, Rothstein R (2011) Triangulation: the holy grail of endoscopic surgery? Surg Endosc 25:1355–1357Google Scholar
  16. 16.
    Bardaro SJ, Swanstrom L (2006) Development of advanced endoscopes for Natural Orifice Transluminal Endoscopic Surgery (NOTES). Minim Invasive Ther Allied Technol Off J Soc Minim Invasive Ther 15:378–383Google Scholar
  17. 17.
    Kobayashi T, Lemoine S, Sugawara A, Tsuchida T, Gotoda T, Oda I, Ueda H, Kakizoe T (2005) A flexible endoscopic surgical system: first report on a conceptual design of the system validated by experiments. Jpn J Clin Oncol 35:667–671PubMedGoogle Scholar
  18. 18.
    Dallemagne B, Marescaux J (2010) The ANUBIS (TM) project. Minim Invasive Ther 19:257–261Google Scholar
  19. 19.
    Swanstrom LL, Kozarek R, Pasricha PJ, Gross S, Birkett D, Park PO, Saadat V, Ewers R, Swain P (2005) Development of a new access device for transgastric surgery. J Gastrointest Surg Off J Soc Surg Aliment Tract 9:1129–1136; discussion 1127–1136Google Scholar
  20. 20.
    Swanstrom L, Swain P, Denk P (2009) Development and validation of a new generation of flexible endoscope for NOTES. Surg Innov 16:104–110PubMedGoogle Scholar
  21. 21.
    Haber GP, Autorino R, Laydner H, Yang B, White MA, Hillyer S, Altunrende F, Khanna R, Spana G, Wahib I, Fareed K, Stein RJ, Kaouk JH (2012) SPIDER surgical system for urologic procedures with laparoendoscopic single-site surgery: from initial laboratory experience to first clinical application. Eur Urol 61:415–422PubMedGoogle Scholar
  22. 22.
    Spaun GO, Zheng B, Swanstrom LL (2009) A multitasking platform for natural orifice translumenal endoscopic surgery (NOTES): a benchtop comparison of a new device for flexible endoscopic surgery and a standard dual-channel endoscope. Surg Endosc 23:2720–2727PubMedGoogle Scholar
  23. 23.
    Bardou B, Nageotte F, Zanne P, de Mathelin M (2009) Design of a telemanipulated system for transluminal surgery. EMBC 2009 Annu Int Conf IEEE Eng Med Biol Soc 1–20:5577–5582Google Scholar
  24. 24.
    Bardou B, Zanne P, Nageotte F, de Mathelin M (2010) Control of a multiple sections flexible endoscopic system. In: IEEE international conference on intelligent robots and systems, pp 2345–2350Google Scholar
  25. 25.
    Lehman AC, Wood NA, Dumpert J, Oleynikov D, Farritor SM (2008) Robotic natural orifice translumenal endoscopic surgery. 2008 IEEE Int Conf Robot Autom 1–9:2969–2974Google Scholar
  26. 26.
    Piccigallo M, Scarfogliero U, Quaglia C, Petroni G, Valdastri P, Menciassi A, Dario P (2010) Design of a novel bimanual robotic system for single-port laparoscopy. IEEE ASME Trans Mechatron 15:871–878Google Scholar
  27. 27.
    Niccolini M, Petroni G, Menciassi A, Dario P, IEEE (2012) Real-time control architecture of a novel Single-Port lapaRoscopy bimaNual roboT (SPRINT). IEEE, New YorkGoogle Scholar
  28. 28.
    Robinson G, Davies JBC (1999) Continuum robots—a state of the art. ICRA ’99 IEEE Int Conf Robot Autom 1–4(Proceedings):2849–2854Google Scholar
  29. 29.
    Can S (2012) A highly versatile single-port system for minimally invasive surgery. Dr. Thesis, Technische Universitat MunchenGoogle Scholar
  30. 30.
    Abbott DJ, Becke C, Rothstein RI, Peine WJ (2007) Design of an endoluminal NOTES robotic system. 2007 IEEE/RSJ Int Conf Intell Robots Syst 1–9:416–422Google Scholar
  31. 31.
    Phee SJ, Kencana AP, Huynh VA, Sun ZL, Low SC, Yang K, Lomanto D, Ho KY (2010) Design of a master and slave transluminal endoscopic robot for natural orifice transluminal endoscopic surgery. Proc Inst Mech Eng C 224:1495–1503Google Scholar
  32. 32.
    Wortman TD, Strabala KW, Lehman AC, Farritor SM, Oleynikov D (2011) Laparoendoscopic single-site surgery using a multi-functional miniature in vivo robot. Int J Med Robot Comput Assist Surg 7:17–21Google Scholar
  33. 33.
    Wortman TD (2011) Design, analysis, and testing of in vivo surgical robots. Master of Science Thesis, University of Nebraska, LincolnGoogle Scholar
  34. 34.
    Xu K, Goldman RE, Ding JN, Allen PK, Fowler DL, Simaan N (2009) System design of an insertable robotic effector platform for single port access (SPA) surgery. In: 2009 IEEE-RSJ international conference on intelligent robots and systems, pp 5546–5552Google Scholar
  35. 35.
    Bajo A, Goldman RE, Wang L, Fowler D, Simaan N, IEEE (2012) Integration and preliminary evaluation of an insertable robotic effectors platform for single port access surgery. In: IEEE international conference on robotics and automation (ICRA)Google Scholar
  36. 36.
    McMahan W, Jones BA, Walker ID (2005) Design and implementation of a multi-section continuum robot: air-octor. 2005 IEEE/RSJ Int Conf Intell Robots Syst 1–4:3345–3352Google Scholar
  37. 37.
    Ning KJ, Worgotter F (2009) A novel concept for building a hyper-redundant chain robot. IEEE Trans Robot 25:1237–1248Google Scholar
  38. 38.
    Kommu SS, Kaouk JH, Rane A (2009) Laparo-endoscopic single-site surgery: preliminary advances in renal surgery. BJU Int 103:1034–1037PubMedGoogle Scholar
  39. 39.
    Romanelli JR, Earle DB (2009) Single-port laparoscopic surgery: an overview. Surg Endosc 23:1419–1427PubMedGoogle Scholar
  40. 40.
    Autorino R, Kaouk JH, Stolzenburg J-U, Gill IS, Mottrie A, Tewari A, Cadeddu JA (2013) Current status and future directions of robotic single-site surgery: a systematic review. Eur Urol 63:266–280PubMedGoogle Scholar
  41. 41.
    Joseph RA, Goh AC, Cuevas SP, Donovan MA, Kauffman MG, Salas NA, Miles B, Bass BL, Dunkin BJ (2010) “Chopstick” surgery: a novel technique improves surgeon performance and eliminates arm collision in robotic single-incision laparoscopic surgery. Surg Endosc 24:1331–1335PubMedGoogle Scholar
  42. 42.
    Bardou B, Nageotte F, Zanne P, de Mathelin M (2010) Design of a robotized flexible endoscope for natural orifice transluminal endoscopic surgery. Springer, New YorkGoogle Scholar
  43. 43.
    Intuitive Surgical, Inc. (2013) The da Vinci surgical system. Sunnyvale, CA. http://www.intuitivesurgical.com/products/davinci_surgical_system/
  44. 44.
    Lehman AC, Wood NA, Dumpert J, Oleynikov D, Farritor SM (2008) Dexterous miniature in vivo robot for NOTES. In: 2008 2nd IEEE RAS and EMBS international conference on biomedical robotics and biomechatronics (Biorob 2008), vols 1 and 2, pp 244–249Google Scholar
  45. 45.
    Low SC, Tang SW, Thant ZM, Phee L, Ho KY, Chung SC (2006) Master–slave robotic system for therapeutic gastrointestinal endoscopic procedures. 2006 28th Annu Int Conf IEEE Eng Med Biol Soc 1–15:738–741Google Scholar
  46. 46.
    Phee SJ, Low SC, Sun ZL, Ho KY, Huang WM, Thant ZA (2008) Robotic system for no-scar gastrointestinal surgery. Int J Med Robot Comput Assist Surg 4:15–22Google Scholar
  47. 47.
    Tiwari MM, Reynoso JF, Lehman AC, Tsang AW, Farritor SM, Oleynikov D (2010) In vivo miniature robots for natural orifice surgery: state of the art and future perspectives. World J Gastrointest Surg 2:217–223PubMedCentralPubMedGoogle Scholar
  48. 48.
    Dolghi O, Strabala KW, Wortman TD, Goede MR, Farritor SM, Oleynikov D (2011) Miniature in vivo robot for laparoendoscopic single-site surgery. Surg Endosc 25:3453–3458PubMedGoogle Scholar
  49. 49.
    Wortman TD, Meyer A, Dolghi O, Lehman AC, McCormick RL, Farritor SM, Oleynikov D (2012) Miniature surgical robot for laparoendoscopic single-incision colectomy. Surg Endosc 26:727–731PubMedGoogle Scholar
  50. 50.
    Aoki H, Sato S (2009) Endoscope apparatus. Olympus Medical Systems Corp., TokyoGoogle Scholar
  51. 51.
    Ito Y, Miyamoto M (2009) Endoscopic system. Olympus Corporation; Olympus Medical Systems Corp., TokyoGoogle Scholar
  52. 52.
    Spaun GO, Zheng B, Martinec DV, Cassera MA, Dunst CM, Swanstrom LL (2009) Bimanual coordination in natural orifice transluminal endoscopic surgery: comparing the conventional dual-channel endoscope, the R-Scope, and a novel direct-drive system. Gastrointest Endosc 69:e39–e45PubMedGoogle Scholar
  53. 53.
    Satgunam S, Miedema B, Whang S, Thaler K (2012) Transvaginal cholecystectomy without laparoscopic support using prototype flexible endoscopic instruments in a porcine model. Surg Endosc 26:2331–2338PubMedGoogle Scholar
  54. 54.
    Asakuma M, Perretta S, Cahill RA, Solano C, Pasupathy S, Dallemagne B, Tanigawa N, Marescaux J (2009) Peroral dual scope for natural orifice transluminal endoscopic surgery (NOTES) gastrotomy closure. Surg Innov 16:97–103PubMedGoogle Scholar
  55. 55.
    Sodergren MH, Clark J, Athanasiou T, Teare J, Yang GZ, Darzi A (2009) Natural orifice translumenal endoscopic surgery: critical appraisal of applications in clinical practice. Surg Endosc 23:680–687PubMedGoogle Scholar
  56. 56.
    Marescaux J, Dalleinagne B, Perretta S, Wattiez A, Mutter D, Cournaros D (2007) Surgery without scars—report of transluminal cholecystectomy in a human being. Arch Surg Chic 142:823–826Google Scholar
  57. 57.
    Saadat V, Ewers RC, Chen EG (2006) Shape lockable apparatus and method for advancing an instrument through unsupported anatomy. USGI Medical, Inc., San ClementeGoogle Scholar
  58. 58.
    Maahs TD, Saadat V, Rothe C, Le TT (2006) Disposable shapelocking system. USGI Medical, Inc., San ClementeGoogle Scholar
  59. 59.
    Mellinger JD, MacFadyen BV, Kozarek RA, Soper ND, Birkett DH, Swanstrom LL (2007) Initial experience with a novel endoscopic device allowing intragastric manipulation and plication. Surg Endosc 21:1002–1005PubMedGoogle Scholar
  60. 60.
    Swain P, Kosarek R, Pasricha PJ, Ewers R, Sadaat V, Gross S, Swanstrom L (2005) The development and testing of a new multichannel, shape-locking guide with tip and mid body articulation for intragastric endosurgery. Gastrointest Endosc 61:AB183Google Scholar
  61. 61.
    Swain P, Rothe C, Bergstrom M, Park P-O, Swanstrom L (2006) Development and testing of a new platform for retroflexed flexible transgastric surgery: cholecystectomy, fundoplication, gastric restriction and diaphragmatic repair. Gastrointest Endosc 63:AB102Google Scholar
  62. 62.
    Clayman RV, Box GN, Abraham JBA, Lee HJ, Deane LA, Sargent ER, Nguyen NT, Chang K, Tan AK, Ponsky LE, McDougall EM (2007) Transvaginal single-port NOTES nephrectomy: initial laboratory experience. J Endourol 21:640–644PubMedGoogle Scholar
  63. 63.
    Pasricha P, Kozarek R, Swain P, Swanstrom L, Raju G, Gross S, Saadat V, Rothe C, Birkett D (2005) A next generation therapeutic endoscope: development of a novel endoluminal surgery system with “birds-eye” visualization and triangulating instruments. Gastrointest Endosc 61:AB106Google Scholar
  64. 64.
    Hattori A, Suzuki N, Hayashibe M, Suzuki S, Otake Y, Sumiyama K, Tajiri H, Kobayashi S (2004) Navigation system for a developed endoscopic surgical robot system. Int Congr Ser 1268:539–544Google Scholar
  65. 65.
    Hattori A, Suzuki N, Suzuki S, Hayashibe M, Otake Y, Kobayashi S (2006) Surgical Robotics and Instrumentation: general development plan of surgical robotic systems. Int J CARS 1:201–228Google Scholar
  66. 66.
    Neuhaus H, Costamagna G, Deviere JL, Fockens R, Ponchon T, Roesch T, Arcade G (2005) Testing of a new endoscope (R-Scope) for en-bloc submucosal dissection (EBSD). Gastrointest Endosc 61:AB234Google Scholar
  67. 67.
    Sumiyama K, Gostout CJ, Rajan E, Bakken TA, Knipschield MA, Chung S, Cotton PB, Hawes RH, Kalloo AN, Kantsevoy SV, Pasricha PJ (2007) Transgastric cholecystectomy: transgastric accessibility to the gallbladder improved with the SEMF method and a novel multibending therapeutic endoscope. Gastrointest Endosc 65:1028–1034PubMedGoogle Scholar
  68. 68.
    Ryou M, Fong DG, Pai RD, Tavakkolizadeh A, Rattner DW, Thompson CC (2007) Dual-port distal pancreatectomy using a prototype endoscope and endoscopic stapler: a natural orifice transluminal endoscopic surgery (NOTES) survival study in a porcine model. Endoscopy 39:881–887PubMedGoogle Scholar
  69. 69.
    Yonezawa J, Kaise M, Sumiyama K, Goda K, Arakawa H, Tajiri H (2006) A novel double-channel therapeutic endoscope (“R-scope”) facilitates endoscopic submucosal dissection of superficial gastric neoplasms. Endoscopy 38:1011–1015PubMedGoogle Scholar
  70. 70.
    Lee SH, Gromski MA, Derevianko A, Jones DB, Pleskow DK, Sawhney M, Chuttani R, Matthes K (2010) Efficacy of a prototype endoscope with two deflecting working channels for endoscopic submucosal dissection: a prospective, comparative, ex vivo study. Gastrointest Endosc 72:155–160PubMedCentralPubMedGoogle Scholar
  71. 71.
    Moyer MT, Haluck RS, Gopal J, Pauli EM, Mathew A (2010) Transgastric organ resection solely with the prototype R-scope and the self-approximating transluminal access technique. Gastrointest Endosc 72:170–176PubMedGoogle Scholar
  72. 72.
    Trunzo JA, Poulose BK, McGee MF, Nikfarjam M, Schomisch SJ, Onders RP, Jin J, Chak A, Ponsky JL, Marks JM (2010) The diagnostic efficacy of natural orifice transluminal endoscopic surgery: is there a role in the intensive care unit? Surg Endosc 24:2485–2491PubMedGoogle Scholar
  73. 73.
    Weitzner B, Smith PJ, Golden JB, Intoccia BJ, Suon N, Barenboym M (2008) Direct drive instruments and methods of use. Boston Scientific Scimed, Inc., MNGoogle Scholar
  74. 74.
    Weitzner B, Smith PJ, Golden JB, Intoccia BJ, Suon N, Shaw WJ (2012) Direct drive endoscopy systems and methods. Boston Scientific Scimed, Inc., Maple GroveGoogle Scholar
  75. 75.
    Spaun GO, Swanstrom LL (2008) Quo vadis NOTES? Eur Surg Acta Chir Austriaca 40:211–219Google Scholar
  76. 76.
    Fernandez-Esparrach G, Shaikh SN, Soler NJ, Hungness ES, Rothstein RI, Swanstrom LL, Thompson CC (2008) A new multi-tasking platform for advanced intralumenal and NOTES procedures: learning curve assessment, and accuracy in an endoscopic mucosal resection model. Gastrointest Endosc 67:AB146–AB147Google Scholar
  77. 77.
    Rothstein RI, Swanstrom LL (2008) Use of the direct drive endoscopic system (DDES) for in-vivo mucosal resection in a porcine model. Gastrointest Endosc 67:AB146Google Scholar
  78. 78.
    Richard PD (2010) Flexible port seal. Tyco Healthcare Group LP, North HavenGoogle Scholar
  79. 79.
    Azarbarzin K, Mastri D, Stearns R (2010) Surgical instruments with improved dexterity for use in minimally invasive surgical procedures. SurgiQuest, Inc., OrangeGoogle Scholar
  80. 80.
    Stolzenburg JU, Kallidonis P, Oh MA, Ghulam N, Do M, Haefner T, Dietel A, Till H, Sakellaropoulos G, Liatsikos EN (2010) Comparative assessment of laparoscopic single-site surgery instruments to conventional laparoscopic in laboratory setting. J Endourol 24:239–245PubMedGoogle Scholar
  81. 81.
    Desai MM, Rao PP, Aron M, Pascal-Haber G, Desai MR, Mishra S, Kaouk JH, Gill IS (2008) Scarless single port transumbilical nephrectomy and pyeloplasty: first clinical report. BJU Int 101:83–88PubMedGoogle Scholar
  82. 82.
    Gill IS, Canes D, Aron M, Haber GP, Goldfarb DA, Flechner S, Desai MR, Kaouk JH, Desai MM (2008) Single port transumbilical (E-NOTES) donor nephrectomy. J Urol 180:637–641; discussion 641Google Scholar
  83. 83.
    Goel RK, Kaouk JH (2008) Single port access renal cryoablation (SPARC): a new approach. Eur Urol 53:1204–1209PubMedGoogle Scholar
  84. 84.
    Kaouk JH, Haber GP, Goel RK, Desai MM, Aron M, Rackley RR, Moore C, Gill IS (2008) Single-port laparoscopic surgery in urology: initial experience. Urology 71:3–6PubMedGoogle Scholar
  85. 85.
    Rane A, Rao P, Rao P (2008) Single-port-access nephrectomy and other laparoscopic urologic procedures using a novel laparoscopic port (R-port). Urology 72:260–263; discussion 263–264Google Scholar
  86. 86.
    Curcillo PG II, King SA, Podolsky ER, Rottman SJ (2009) Single port access (SPA) minimal access surgery through a single incision. Surg Technol Int 18:19–25PubMedGoogle Scholar
  87. 87.
    Mereu L, Angioni S, Melis GB, Mencaglia L (2010) Single access laparoscopy for adnexal pathologies using a novel reusable port and curved instruments. Int J Gynecol Obstet 109:78–80Google Scholar
  88. 88.
    Williams MS, Stack RS, Orth GA, Smith JA, Glenn RA, Fifer DW, Athas WL, Pryor A (2011) System and method for multi-instrument surgical access. Patent US20110118545A1Google Scholar
  89. 89.
    Williams MS, Stack RS, Orth GA, Smith JA, Glenn RA, Fifer DW, Athas WL, Pryor A (2011) Procedural cannula and support system for surgical procedures. Patent US20110066173A1Google Scholar
  90. 90.
    Knight J, Tunitsky-Britton E, Muffly T, Michener CM, Escobar PF (2011) Single-port gynecologic surgery with a novel surgical platform. Surg Innov 19:316–322Google Scholar
  91. 91.
    Pryor AD, Tushar JR, DiBernardo LR (2010) Single-port cholecystectomy with the TransEnterix SPIDER: simple and safe. Surg Endosc 24:917–923PubMedCentralPubMedGoogle Scholar
  92. 92.
    Salas N, Gorin MA, Gorbatiy V, Castle SM, Bird VG, Leveillee RJ (2011) Laparoendoscopic single site nephrectomy with the SPIDER surgical system: engineering advancements tested in a porcine model. J Endourol 25:739–742PubMedGoogle Scholar
  93. 93.
    Leveillee RJ, Castle SM, Gorin MA, Salas N, Gorbatiy V (2011) Initial experience with laparoendoscopic single-site simple nephrectomy using the TransEnterix SPIDER surgical system: assessing feasibility and safety. J Endourol 25:923–925PubMedGoogle Scholar
  94. 94.
    Dejima T, Matsuno K, Takemoto S (2011) Medical treatment endoscope. Olympus Medical Systems Corp., TokyoGoogle Scholar
  95. 95.
    Fuchs K-H, Breithaupt W (2012) Transgastric small bowel resection with the new multitasking platform EndoSAMURAI (TM) for natural orifice transluminal endoscopic surgery. Surg Endosc 26:2281–2287PubMedGoogle Scholar
  96. 96.
    Ikeda K, Sumiyama K, Tajiri H, Yasuda K, Kitano S (2011) Evaluation of a new multitasking platform for endoscopic full-thickness resection. Gastrointest Endosc 73:117–122PubMedGoogle Scholar
  97. 97.
    Marescaux JFB, Melanson JS, Dallemagne B, Leroy J, Mutter D, Barry JP, Storz S, Leonhard M (2008) Endoscope system with pivotable arms. Karl Storz Endovision, Inc., CharltonGoogle Scholar
  98. 98.
    Marescaux JFB, Melanson JS, Dallemagne B, Leroy J, Mutter DRDM, Barry JP, Storz S, Leonhard M (2009) Articulating endoscope instrument. Karl Storz Endovision, Inc., CharltonGoogle Scholar
  99. 99.
    Perretta S, Dallemagne B, Barry B, Marescaux J (2013) The ANUBISCOPE(A (R)) flexible platform ready for prime time: description of the first clinical case. Surg Endosc 27:2630PubMedGoogle Scholar
  100. 100.
    Farritor SM, Lehman A, Rentschler M (2009) Multifunctional operational component for robotic devices. University of Nebraska Medical Center, NebraskaGoogle Scholar
  101. 101.
    Farritor SM, Rentschler M, Lehman A, Platt SR, Hawks J (2012) Methods, systems, and devices for surgical access and procedures. The Board of Regents of the University of Nebraska (UNeMed), LincolnGoogle Scholar
  102. 102.
    Prisco GM, Gerbi CR, Rogers TW, Steger JR (2011) Curved cannula robotic surgical system e.g. multi-arm robotic surgical system, for performing e.g. single port minimally invasive surgery, has curved cannulas that are moved by associated robotic manipulators around centers of motion. Intuitive Surgical, Inc.; Intuitive Surgical Operations, Inc., SunnyvaleGoogle Scholar
  103. 103.
    Cestari A, Buffi NM, Lista G, Lughezzani G, Larcher A, Lazzeri M, Sangalli M, Rigatti P, Guazzoni G (2012) Feasibility and preliminary clinical outcomes of robotic laparoendoscopic single-site (R-LESS) pyeloplasty using a new single-port platform. Eur Urol 62:175–179PubMedGoogle Scholar
  104. 104.
    Konstantinidis KM, Hirides P, Hirides S, Chrysocheris P, Georgiou M (2012) Cholecystectomy using a novel Single-Site(A (R)) robotic platform: early experience from 45 consecutive cases. Surg Endosc 26:2687–2694PubMedGoogle Scholar
  105. 105.
    Kroh M, El-Hayek K, Rosenblatt S, Chand B, Escobar P, Kaouk J, Chalikonda S (2011) First human surgery with a novel single-port robotic system: cholecystectomy using the da Vinci Single-Site platform. Surg Endosc 25:3566–3573PubMedGoogle Scholar
  106. 106.
    Morel P, Hagen ME, Bucher P, Buchs NC, Pugin F (2011) Robotic single-port cholecystectomy using a new platform: initial clinical experience. J Gastrointest Surg 15:2182–2186PubMedGoogle Scholar
  107. 107.
    Spinoglio G, Lenti LM, Maglione V, Lucido FS, Priora F, Bianchi PP, Grosso F, Quarati R (2012) Single-site robotic cholecystectomy (SSRC) versus single-incision laparoscopic cholecystectomy (SILC): comparison of learning curves. First European experience. Surg Endosc 26:1648–1655PubMedGoogle Scholar
  108. 108.
    Wren SM, Curet MJ (2011) Single-port robotic cholecystectomy results from a first human use clinical study of the new da Vinci single-site surgical platform. Arch Surg Chic 146:1122–1127Google Scholar
  109. 109.
    Wales KS, Boudreaux CP (2006) Surgical instrument with articulating shaft with single pivot closure and double pivot frame ground. Ethicon Endo-Surgery, Inc., CincinnatiGoogle Scholar
  110. 110.
    Raman JD, Bensalah K, Bagrodia A, Stern JM, Cadeddu JA (2007) Laboratory and clinical development of single keyhole umbilical nephrectomy. Urology 70:1039–1042PubMedGoogle Scholar
  111. 111.
    Stolzenburg J-U, Kallidonis P, Hellawell G, Do M, Haefner T, Dietel A, Liatsikos EN (2009) Technique of laparoscopic–endoscopic single-site surgery radical nephrectomy. Eur Urol 56:644–650PubMedGoogle Scholar
  112. 112.
    Burbank WA (2010) Backend mechanism for four-cable wrist. Intuitive Surgical, Inc., SunnyvaleGoogle Scholar
  113. 113.
    Diolaiti N (2012) Method and system for moving a plurality of articulated instruments in tandem back towards an entry guide. Intuitive Surgical Operations, Inc., SunnyvaleGoogle Scholar
  114. 114.
    Box GN, Lee HJ, Santos RLS, Abraham JBA, Louie MK, Gamboa AJR, Alipanah R, Deane LA, McDougall EM, Clayman RV (2008) Rapid communication—robot-assisted NOTES nephrectomy: initial report. J Endourol 22:503–506PubMedGoogle Scholar
  115. 115.
    Haber GP, Crouzet S, Kamoi K, Berger A, Aron M, Goel R, Canes D, Desai M, Gill IS, Kaouk JH (2008) Robotic NOTES (Natural Orifice Translumenal Endoscopic Surgery) in reconstructive urology: initial laboratory experience. Urology 71:996–1000PubMedGoogle Scholar
  116. 116.
    Kaouk JH, Goel RK, Haber G-P, Crouzet S, Stein RJ (2009) Robotic single-port transumbilical surgery in humans: initial report. BJU Int 103:366–369PubMedGoogle Scholar
  117. 117.
    White MA, Haber G-P, Kaouk JH (2010) Robotic single-site surgery. Curr Opin Urol 20:86–91PubMedGoogle Scholar
  118. 118.
    Simaan N, Xu K, Goldman R, Allen P, Fowler D, Ding J (2011) Systems, devices, and methods for providing insertable robotic sensory and manipulation platforms for single port surgery. Trustees of Columbia University, New YorkGoogle Scholar
  119. 119.
    Ding JA, Xu K, Goldman R, Allen P, Fowler D, Simaan N (2010) Design, simulation and evaluation of kinematic alternatives for insertable robotic effectors platforms in single port access surgery. In: IEEE international conference on robotics, pp 1053–1058Google Scholar
  120. 120.
    Simaan N, Taylor R, Flint P (2004) High dexterity snake-like robotic slaves for minimally invasive telesurgery of the upper airway. Medical image computing and computer-assisted intervention—MICCAI 2004, Proceedings Pt 2, vol 3217, pp 17–24Google Scholar
  121. 121.
    Xu K, Simaan N (2008) An investigation of the intrinsic force sensing capabilities of continuum robots. IEEE Trans Robot 24:576–587Google Scholar
  122. 122.
    Dumpert J, Lehman AC, Wood NA, Oleynikov D, Farritor SM, IEEE (2009) Semi-autonomous surgical tasks using a miniature in vivo surgical robot. In: IEEE engineering in medicine and biology society conference proceedingsGoogle Scholar
  123. 123.
    Lehman AC, Dumpert J, Wood NA, Visty AQ, Farritor SM, Varnell B, Oleynikov D (2009) Natural Orifice Translumenal Endoscopic Surgery with a miniature in vivo surgical robot. Surg Endosc 23:1649PubMedGoogle Scholar
  124. 124.
    Lehman AC, Dumpert J, Wood NA, Redden L, Visty AQ, Farritor S, Varnell B, Oleynikov D (2009) Natural orifice cholecystectomy using a miniature robot. Surg Endosc 23:260–266PubMedGoogle Scholar
  125. 125.
    Farritor SM, Lehman AC, Oleynikov D (2011) Miniature in vivo robots for NOTES; surgical robotics. In: Rosen J, Hannaford B, Satava RM (eds) Surgical Robotics. Springer, New York, pp 123–138Google Scholar
  126. 126.
    Weitzner BD, Rogers GS, Solbjor A, Meglan D, Ailinger R, Brock DL, Lee W, Driscoll D (2004) Robotic medical instrument system. endoVia Medical, Inc., NorwoodGoogle Scholar
  127. 127.
    Brock DL, Lee W (2005) Surgical instrument. endoVia Medical, Inc., NorwoodGoogle Scholar
  128. 128.
    Rothstein RI, Ailinger RA, Peine W (2004) Computer-assisted endoscopic robot system for advanced therapeutic procedures. Gastrointest Endosc 59:AB113Google Scholar
  129. 129.
    Phee SJL, Low SC, Ho KY, Chung SC (2012) Robotic system for flexible endoscopy. Nanyang Technological University, SingaporeGoogle Scholar
  130. 130.
    Kencana AP, Phee SJ, Low SC, Sun ZL, Huynh VA, Ho KY, Chung SC (2008) Master and slave robotic system for natural orifice transluminal endoscopic surgery. In: 2008 IEEE conference on robotics, automation, and mechatronics, vol 1 and 2, pp 566–570Google Scholar
  131. 131.
    Phee SJ, Low SC, Huynh VA, Kencana AP, Sun ZL, Yang K, IEEE (2009) Master and slave transluminal endoscopic robot (MASTER) for natural orifice transluminal endoscopic surgery (NOTES). IEEE, New YorkGoogle Scholar
  132. 132.
    Ho KY, Phee SJ, Shabbir A, Low SC, Huynh VA, Kencana AP, Yang K, Lomanto D, So BYJ, Wong YYJ, Chung SCS (2010) Endoscopic submucosal dissection of gastric lesions by using a Master and Slave Transluminal Endoscopic Robot (MASTER). Gastrointest Endosc 72:593–599PubMedGoogle Scholar
  133. 133.
    Sun ZL, Ang RY, Lim EW, Wang Z, Ho KY, Phee SJ (2011) Enhancement of a master–slave robotic system for natural orifice transluminal endoscopic surgery. Ann Acad Med Singap 40:223–230PubMedGoogle Scholar
  134. 134.
    Ho KY, Phee LS, Lomanto D, Low SC, Huynh VA, Kencana AP, Yang K, Rasouli M, Chung SCS (2009) Natural orifice transgastric endoscopic segmental hepatectomy using a through-the-scope intuitively controlled robotics-enhanced manipulator system. Gastrointest Endosc 69:AB162Google Scholar
  135. 135.
    Phee SJ, Ho KY, Lomanto D, Low SC, Huynh VA, Kencana AP, Yang K, Sun ZL, Chung SCS (2010) Natural orifice transgastric endoscopic wedge hepatic resection in an experimental model using an intuitively controlled master and slave transluminal endoscopic robot (MASTER). Surg Endosc 24:2293–2298PubMedGoogle Scholar
  136. 136.
    Phee SJ, Reddy N, Chiu PWY, Rebala P, Rao GV, Wang Z, Sun ZL, Wong JYY, Ho KY (2012) Robot-assisted endoscopic submucosal dissection is effective in treating patients with early-stage gastric neoplasia. Clin Gastroenterol Hepatol 10:1117–1121PubMedGoogle Scholar
  137. 137.
    Wang Z, Phee S, Lomanto D, Goel R, Rebala P, Sun Z, Trasti S, Reddy N, Wong J, Ho K (2012) Endoscopic submucosal dissection of gastric lesions by using a master and slave transluminal endoscopic robot: an animal survival study. Endoscopy 44:690–694Google Scholar
  138. 138.
    Lehman AC, Wood NA, Farritor S, Goede MR, Oleynikov D (2011) Dexterous miniature robot for advanced minimally invasive surgery. Surg Endosc 25:119–123PubMedGoogle Scholar
  139. 139.
    Lehman AC, Tiwari MM, Shah BC, Farritor SM, Nelson CA, Oleynikov D (2010) Recent advances in the CoBRASurge robotic manipulator and dexterous miniature in vivo robotics for minimally invasive surgery. Proc Inst Mech Eng C 224:1487–1494Google Scholar
  140. 140.
    Can S, Fiolka A, Mayer H, Knoll A, Schneider A, Wilhelm D, Meining A, Feussner H (2008) The mechatronic support system HVSPS and the way to NOTES. Minim Invasive Ther 17:341–345Google Scholar
  141. 141.
    Can S, Mayer H, Fiolka A, Schneider A, Wilhelm D, Feussner H, Knoll A (2009) The “Highly Versatile Single Port System” for laparoscopic surgery: introduction and first clinical application. In: VanderSloten J, Verdonck P, Nyssen M, Haueisen J (eds) 4th European conference of the International Federation for Medical and Biological Engineering. Springer, New York, pp 1650–1654Google Scholar
  142. 142.
    Sanchez LA, Petroni G, Piccigallo M, Scarfogliero U, Niccolini M, Liu C, Stefanini C, Zemiti N, Menciassi A, Poignet P, Dario P (2011) Real-time control and evaluation of a teleoperated miniature arm for Single Port Laparoscopy. In: Conference proceedings : annual international conference of the IEEE Engineering in Medicine and Biology Society, IEEE Engineering in Medicine and Biology Society Conference 2011, pp 7049–7053Google Scholar
  143. 143.
    Petroni G, Niccolini M, Menciassi A, Dario P, Cuschieri A (2013) A novel intracorporeal assembling robotic system for single-port laparoscopic surgery. Surg Endosc 27:665–670PubMedGoogle Scholar
  144. 144.
    Swain P, Park PO (2004) Endoscopic suturing. Best Pract Res Clin Gastroenterol 18:37–47PubMedGoogle Scholar
  145. 145.
    Swain CP, Kadirkamanathan SS, Gong F, Lai KC, Ratani RS, Brown GJ, Mills TN (1994) Knot tying at flexible endoscopy. Gastrointest Endosc 40:722–729PubMedGoogle Scholar
  146. 146.
    Berkelman P, Cinquin P, Boidard E, Troccaz J, Létoublon C, Ayoubi J-M (2003) Design, control and testing of a novel compact laparoscopic endoscope manipulator. Proc Inst Mech Eng I 217:329–341Google Scholar
  147. 147.
    Yamashita H, Kim D, Hata N, Dohi T (2003) Multi-slider linkage mechanism for endoscopic forceps manipulator. In: 2003 IEEE/RSJ international conference on intelligent robots and systems, 2003 Proceedings (IROS 2003), vol 2573, pp 2577–2582Google Scholar
  148. 148.
    Schlaak HF, Rose A, Wohlleber C, Kassner S, Werthschutzky R (2009) A novel laparoscopic instrument with multiple degrees of freedom and intuitive control. 4th Eur Conf Int Fed Med Biol Eng 22:1660–1663Google Scholar
  149. 149.
    Yamashita H, Aoki E, Suzuki T, Nakazawa T, Kobayashie E, Hashizume M, Sakuma I, Dohi T (2005) Development of endoscopic forceps manipulator using multi-slider linkage mechanisms. J Jpn Soc Comput Aided Surg 7:201–204Google Scholar
  150. 150.
    Toledo L, Gossot D, Fritsch S, Revillon Y, Reboulet C (1999) Study of sustained forces and the working space of endoscopic surgery instruments. Ann Chir 53:587–597PubMedGoogle Scholar
  151. 151.
    de Visser H, Heijnsdijk EA, Herder JL, Pistecky PV (2002) Forces and displacements in colon surgery. Surg Endosc 16:1426–1430PubMedGoogle Scholar
  152. 152.
    Dev H, Sooriakumaran P, Tewari A, Rane A (2011) LESSons in minimally invasive urology. BJU Int 107:1555–1559PubMedGoogle Scholar
  153. 153.
    McGee MF, Rosen MJ, Marks J, Onders RP, Chak A, Faulx A, Chen VK, Ponsky J (2006) A primer on natural orifice transluminal endoscopic surgery: building a new paradigm. Surg Innov 13:86–93PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • Ewout A. Arkenbout
    • 1
    Email author
  • Paul W. J. Henselmans
    • 1
  • Filip Jelínek
    • 1
  • Paul Breedveld
    • 1
  1. 1.Bio-Inspired Technology Group, Biomechanical Engineering Dept., Faculty of Mechanical, Maritime and Materials EngineeringDelft University of TechnologyDelftThe Netherlands

Personalised recommendations