Skip to main content
Log in

A state of the art review and categorization of multi-branched instruments for NOTES and SILS

  • Review
  • Published:
Surgical Endoscopy Aims and scope Submit manuscript

Abstract

Background

Since the advent of Natural Orifice Translumenal Endoscopic Surgery (NOTES) and single incision laparoscopic surgery (SILS), a variety of multitasking platforms have been under development with the objective to allow for bimanual surgical tasks to be performed. These instruments show large differences in construction, enabled degrees of freedom (DOF), and control aspects.

Methods

Through a literature review, the absence of an in-depth analysis and structural comparison of these instruments in the literature is addressed. All the designed and prototyped multitasking platforms are identified and categorized with respect to their actively controlled DOF in their shafts and branches. Additionally, a graphical overview of patents, bench test experiments, and animal and/or human trials performed with each instrument is provided.

Results

The large range of instruments, various actuation strategies, and different direct and indirect control methods implemented in the instruments show that an optimal instrument configuration has not been found yet. Moreover, several questions remain unanswered with respect to which DOF are essential for bimanual tasks and which control methods are best suited for the control of these DOF.

Conclusions

Considering the complexity of the currently prototyped and tested instruments, future NOTES and SILS instrument development will potentially necessitate a reduction of the available DOF to minimize the control complexity, thereby allowing for single surgeon bimanual task execution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Notes

  1. Synonyms to SILS are Single-Port Access (SPA) surgery, Single-Site Laparoscopy (SSL), Single-Port Laparoscopic Surgery (SPLS), Single-Port Laparoscopy (SPL), and Laparo Endoscopic Single-Site (LESS) surgery.

References

  1. Kalloo AN, Singh VK, Jagannath SB, Niiyama H, Hill SL, Vaughn CA, Magee CA, Kantsevoy SV (2004) Flexible transgastric peritoneoscopy: a novel approach to diagnostic and therapeutic interventions in the peritoneal cavity. Gastrointest Endosc 60:114–117

    PubMed  Google Scholar 

  2. Dhumane PW, Diana M, Leroy J, Marescaux J (2011) Minimally invasive single-site surgery for the digestive system: a technological review. J Minimal Access Surg 7:40–51

    Google Scholar 

  3. Rattner D, Kalloo A (2006) ASGE/SAGES Working Group on Natural Orifice Translumenal Endoscopic Surgery. October 2005. Surg Endosc 20:329–333

    CAS  PubMed  Google Scholar 

  4. Fan C, Dodou D, Breedveld P (2013) Review of manual control methods for handheld maneuverable instruments. Minim Invasive Ther 22:127–135

    Google Scholar 

  5. Yeung BP, Gourlay T (2012) A technical review of flexible endoscopic multitasking platforms. Int J Surg 10:345–354

    PubMed  Google Scholar 

  6. Karimyan V, Sodergren M, Clark J, Yang G-Z, Darzi A (2009) Navigation systems and platforms in natural orifice translumenal endoscopic surgery (NOTES). Int J Surg 7:297–304

    PubMed  Google Scholar 

  7. Zhou Y, Ren H, Meng MQH, Tse ZTH, Yu H (2013) Robotics in natural orifice transluminal endoscopic surgery. J Mech Med Biol 13:1350044

    Google Scholar 

  8. Swanstrom LL, Whiteford M, Khajanchee Y (2008) Developing essential tools to enable transgastric surgery. Surg Endosc 22:600–604

    CAS  PubMed  Google Scholar 

  9. Suzuki N, Hattori A, Tanoue K, Ieiri S, Konishi K, Tomikawa M, Kenmotsu H, Hashizume M (2010) Scorpion shaped endoscopic surgical robot for NOTES and SPS with augmented reality functions. In: Liao H, Edwards PJE, Pan X, Fan Y, Yang G-Z (eds) Medical imaging and augmented reality. Springer, Berlin, pp 541–550

    Google Scholar 

  10. Thompson CC, Ryou M, Soper NJ, Hungess ES, Rothstein RI, Swanstrom LL (2009) Evaluation of a manually driven, multitasking platform for complex endoluminal and natural orifice transluminal endoscopic surgery applications. Gastrointest Endosc 70:121–125

    PubMed  Google Scholar 

  11. Astudillo JA, Sporn E, Bachman S, Miedema B, Thaler K (2009) Transgastric cholecystectomy using a prototype endoscope with 2 deflecting working channels (with video). Gastrointest Endosc 69:297–302

    PubMed  Google Scholar 

  12. Olympus (2013) Olympus GIF type 2T160, exceptional dual-channel versatility. Tokyo, Japan

  13. Horgan S, Thompson K, Talamini M, Ferreres A, Jacobsen G, Spaun G, Cullen J, Swanstrom L (2011) Clinical experience with a multifunctional, flexible surgery system for endolumenal, single-port, and NOTES procedures. Surg Endosc 25:586–592

    PubMed Central  PubMed  Google Scholar 

  14. Pearl JP, Ponsky JL (2008) Natural orifice translumenal endoscopic surgery: a critical review. J Gastrointest Surg Off J Soc Surg Aliment Tract 12:1293–1300

    Google Scholar 

  15. von Renteln D, Vassiliou M, Rösch T, Rothstein R (2011) Triangulation: the holy grail of endoscopic surgery? Surg Endosc 25:1355–1357

    Google Scholar 

  16. Bardaro SJ, Swanstrom L (2006) Development of advanced endoscopes for Natural Orifice Transluminal Endoscopic Surgery (NOTES). Minim Invasive Ther Allied Technol Off J Soc Minim Invasive Ther 15:378–383

    Google Scholar 

  17. Kobayashi T, Lemoine S, Sugawara A, Tsuchida T, Gotoda T, Oda I, Ueda H, Kakizoe T (2005) A flexible endoscopic surgical system: first report on a conceptual design of the system validated by experiments. Jpn J Clin Oncol 35:667–671

    PubMed  Google Scholar 

  18. Dallemagne B, Marescaux J (2010) The ANUBIS (TM) project. Minim Invasive Ther 19:257–261

    Google Scholar 

  19. Swanstrom LL, Kozarek R, Pasricha PJ, Gross S, Birkett D, Park PO, Saadat V, Ewers R, Swain P (2005) Development of a new access device for transgastric surgery. J Gastrointest Surg Off J Soc Surg Aliment Tract 9:1129–1136; discussion 1127–1136

  20. Swanstrom L, Swain P, Denk P (2009) Development and validation of a new generation of flexible endoscope for NOTES. Surg Innov 16:104–110

    PubMed  Google Scholar 

  21. Haber GP, Autorino R, Laydner H, Yang B, White MA, Hillyer S, Altunrende F, Khanna R, Spana G, Wahib I, Fareed K, Stein RJ, Kaouk JH (2012) SPIDER surgical system for urologic procedures with laparoendoscopic single-site surgery: from initial laboratory experience to first clinical application. Eur Urol 61:415–422

    PubMed  Google Scholar 

  22. Spaun GO, Zheng B, Swanstrom LL (2009) A multitasking platform for natural orifice translumenal endoscopic surgery (NOTES): a benchtop comparison of a new device for flexible endoscopic surgery and a standard dual-channel endoscope. Surg Endosc 23:2720–2727

    PubMed  Google Scholar 

  23. Bardou B, Nageotte F, Zanne P, de Mathelin M (2009) Design of a telemanipulated system for transluminal surgery. EMBC 2009 Annu Int Conf IEEE Eng Med Biol Soc 1–20:5577–5582

    Google Scholar 

  24. Bardou B, Zanne P, Nageotte F, de Mathelin M (2010) Control of a multiple sections flexible endoscopic system. In: IEEE international conference on intelligent robots and systems, pp 2345–2350

  25. Lehman AC, Wood NA, Dumpert J, Oleynikov D, Farritor SM (2008) Robotic natural orifice translumenal endoscopic surgery. 2008 IEEE Int Conf Robot Autom 1–9:2969–2974

    Google Scholar 

  26. Piccigallo M, Scarfogliero U, Quaglia C, Petroni G, Valdastri P, Menciassi A, Dario P (2010) Design of a novel bimanual robotic system for single-port laparoscopy. IEEE ASME Trans Mechatron 15:871–878

    Google Scholar 

  27. Niccolini M, Petroni G, Menciassi A, Dario P, IEEE (2012) Real-time control architecture of a novel Single-Port lapaRoscopy bimaNual roboT (SPRINT). IEEE, New York

    Google Scholar 

  28. Robinson G, Davies JBC (1999) Continuum robots—a state of the art. ICRA ’99 IEEE Int Conf Robot Autom 1–4(Proceedings):2849–2854

    Google Scholar 

  29. Can S (2012) A highly versatile single-port system for minimally invasive surgery. Dr. Thesis, Technische Universitat Munchen

  30. Abbott DJ, Becke C, Rothstein RI, Peine WJ (2007) Design of an endoluminal NOTES robotic system. 2007 IEEE/RSJ Int Conf Intell Robots Syst 1–9:416–422

    Google Scholar 

  31. Phee SJ, Kencana AP, Huynh VA, Sun ZL, Low SC, Yang K, Lomanto D, Ho KY (2010) Design of a master and slave transluminal endoscopic robot for natural orifice transluminal endoscopic surgery. Proc Inst Mech Eng C 224:1495–1503

    Google Scholar 

  32. Wortman TD, Strabala KW, Lehman AC, Farritor SM, Oleynikov D (2011) Laparoendoscopic single-site surgery using a multi-functional miniature in vivo robot. Int J Med Robot Comput Assist Surg 7:17–21

    Google Scholar 

  33. Wortman TD (2011) Design, analysis, and testing of in vivo surgical robots. Master of Science Thesis, University of Nebraska, Lincoln

  34. Xu K, Goldman RE, Ding JN, Allen PK, Fowler DL, Simaan N (2009) System design of an insertable robotic effector platform for single port access (SPA) surgery. In: 2009 IEEE-RSJ international conference on intelligent robots and systems, pp 5546–5552

  35. Bajo A, Goldman RE, Wang L, Fowler D, Simaan N, IEEE (2012) Integration and preliminary evaluation of an insertable robotic effectors platform for single port access surgery. In: IEEE international conference on robotics and automation (ICRA)

  36. McMahan W, Jones BA, Walker ID (2005) Design and implementation of a multi-section continuum robot: air-octor. 2005 IEEE/RSJ Int Conf Intell Robots Syst 1–4:3345–3352

    Google Scholar 

  37. Ning KJ, Worgotter F (2009) A novel concept for building a hyper-redundant chain robot. IEEE Trans Robot 25:1237–1248

    Google Scholar 

  38. Kommu SS, Kaouk JH, Rane A (2009) Laparo-endoscopic single-site surgery: preliminary advances in renal surgery. BJU Int 103:1034–1037

    PubMed  Google Scholar 

  39. Romanelli JR, Earle DB (2009) Single-port laparoscopic surgery: an overview. Surg Endosc 23:1419–1427

    PubMed  Google Scholar 

  40. Autorino R, Kaouk JH, Stolzenburg J-U, Gill IS, Mottrie A, Tewari A, Cadeddu JA (2013) Current status and future directions of robotic single-site surgery: a systematic review. Eur Urol 63:266–280

    PubMed  Google Scholar 

  41. Joseph RA, Goh AC, Cuevas SP, Donovan MA, Kauffman MG, Salas NA, Miles B, Bass BL, Dunkin BJ (2010) “Chopstick” surgery: a novel technique improves surgeon performance and eliminates arm collision in robotic single-incision laparoscopic surgery. Surg Endosc 24:1331–1335

    PubMed  Google Scholar 

  42. Bardou B, Nageotte F, Zanne P, de Mathelin M (2010) Design of a robotized flexible endoscope for natural orifice transluminal endoscopic surgery. Springer, New York

    Google Scholar 

  43. Intuitive Surgical, Inc. (2013) The da Vinci surgical system. Sunnyvale, CA. http://www.intuitivesurgical.com/products/davinci_surgical_system/

  44. Lehman AC, Wood NA, Dumpert J, Oleynikov D, Farritor SM (2008) Dexterous miniature in vivo robot for NOTES. In: 2008 2nd IEEE RAS and EMBS international conference on biomedical robotics and biomechatronics (Biorob 2008), vols 1 and 2, pp 244–249

  45. Low SC, Tang SW, Thant ZM, Phee L, Ho KY, Chung SC (2006) Master–slave robotic system for therapeutic gastrointestinal endoscopic procedures. 2006 28th Annu Int Conf IEEE Eng Med Biol Soc 1–15:738–741

    Google Scholar 

  46. Phee SJ, Low SC, Sun ZL, Ho KY, Huang WM, Thant ZA (2008) Robotic system for no-scar gastrointestinal surgery. Int J Med Robot Comput Assist Surg 4:15–22

    CAS  Google Scholar 

  47. Tiwari MM, Reynoso JF, Lehman AC, Tsang AW, Farritor SM, Oleynikov D (2010) In vivo miniature robots for natural orifice surgery: state of the art and future perspectives. World J Gastrointest Surg 2:217–223

    PubMed Central  PubMed  Google Scholar 

  48. Dolghi O, Strabala KW, Wortman TD, Goede MR, Farritor SM, Oleynikov D (2011) Miniature in vivo robot for laparoendoscopic single-site surgery. Surg Endosc 25:3453–3458

    PubMed  Google Scholar 

  49. Wortman TD, Meyer A, Dolghi O, Lehman AC, McCormick RL, Farritor SM, Oleynikov D (2012) Miniature surgical robot for laparoendoscopic single-incision colectomy. Surg Endosc 26:727–731

    PubMed  Google Scholar 

  50. Aoki H, Sato S (2009) Endoscope apparatus. Olympus Medical Systems Corp., Tokyo

    Google Scholar 

  51. Ito Y, Miyamoto M (2009) Endoscopic system. Olympus Corporation; Olympus Medical Systems Corp., Tokyo

    Google Scholar 

  52. Spaun GO, Zheng B, Martinec DV, Cassera MA, Dunst CM, Swanstrom LL (2009) Bimanual coordination in natural orifice transluminal endoscopic surgery: comparing the conventional dual-channel endoscope, the R-Scope, and a novel direct-drive system. Gastrointest Endosc 69:e39–e45

    PubMed  Google Scholar 

  53. Satgunam S, Miedema B, Whang S, Thaler K (2012) Transvaginal cholecystectomy without laparoscopic support using prototype flexible endoscopic instruments in a porcine model. Surg Endosc 26:2331–2338

    PubMed  Google Scholar 

  54. Asakuma M, Perretta S, Cahill RA, Solano C, Pasupathy S, Dallemagne B, Tanigawa N, Marescaux J (2009) Peroral dual scope for natural orifice transluminal endoscopic surgery (NOTES) gastrotomy closure. Surg Innov 16:97–103

    PubMed  Google Scholar 

  55. Sodergren MH, Clark J, Athanasiou T, Teare J, Yang GZ, Darzi A (2009) Natural orifice translumenal endoscopic surgery: critical appraisal of applications in clinical practice. Surg Endosc 23:680–687

    PubMed  Google Scholar 

  56. Marescaux J, Dalleinagne B, Perretta S, Wattiez A, Mutter D, Cournaros D (2007) Surgery without scars—report of transluminal cholecystectomy in a human being. Arch Surg Chic 142:823–826

    Google Scholar 

  57. Saadat V, Ewers RC, Chen EG (2006) Shape lockable apparatus and method for advancing an instrument through unsupported anatomy. USGI Medical, Inc., San Clemente

    Google Scholar 

  58. Maahs TD, Saadat V, Rothe C, Le TT (2006) Disposable shapelocking system. USGI Medical, Inc., San Clemente

    Google Scholar 

  59. Mellinger JD, MacFadyen BV, Kozarek RA, Soper ND, Birkett DH, Swanstrom LL (2007) Initial experience with a novel endoscopic device allowing intragastric manipulation and plication. Surg Endosc 21:1002–1005

    PubMed  Google Scholar 

  60. Swain P, Kosarek R, Pasricha PJ, Ewers R, Sadaat V, Gross S, Swanstrom L (2005) The development and testing of a new multichannel, shape-locking guide with tip and mid body articulation for intragastric endosurgery. Gastrointest Endosc 61:AB183

    Google Scholar 

  61. Swain P, Rothe C, Bergstrom M, Park P-O, Swanstrom L (2006) Development and testing of a new platform for retroflexed flexible transgastric surgery: cholecystectomy, fundoplication, gastric restriction and diaphragmatic repair. Gastrointest Endosc 63:AB102

    Google Scholar 

  62. Clayman RV, Box GN, Abraham JBA, Lee HJ, Deane LA, Sargent ER, Nguyen NT, Chang K, Tan AK, Ponsky LE, McDougall EM (2007) Transvaginal single-port NOTES nephrectomy: initial laboratory experience. J Endourol 21:640–644

    PubMed  Google Scholar 

  63. Pasricha P, Kozarek R, Swain P, Swanstrom L, Raju G, Gross S, Saadat V, Rothe C, Birkett D (2005) A next generation therapeutic endoscope: development of a novel endoluminal surgery system with “birds-eye” visualization and triangulating instruments. Gastrointest Endosc 61:AB106

    Google Scholar 

  64. Hattori A, Suzuki N, Hayashibe M, Suzuki S, Otake Y, Sumiyama K, Tajiri H, Kobayashi S (2004) Navigation system for a developed endoscopic surgical robot system. Int Congr Ser 1268:539–544

    Google Scholar 

  65. Hattori A, Suzuki N, Suzuki S, Hayashibe M, Otake Y, Kobayashi S (2006) Surgical Robotics and Instrumentation: general development plan of surgical robotic systems. Int J CARS 1:201–228

    Google Scholar 

  66. Neuhaus H, Costamagna G, Deviere JL, Fockens R, Ponchon T, Roesch T, Arcade G (2005) Testing of a new endoscope (R-Scope) for en-bloc submucosal dissection (EBSD). Gastrointest Endosc 61:AB234

    Google Scholar 

  67. Sumiyama K, Gostout CJ, Rajan E, Bakken TA, Knipschield MA, Chung S, Cotton PB, Hawes RH, Kalloo AN, Kantsevoy SV, Pasricha PJ (2007) Transgastric cholecystectomy: transgastric accessibility to the gallbladder improved with the SEMF method and a novel multibending therapeutic endoscope. Gastrointest Endosc 65:1028–1034

    PubMed  Google Scholar 

  68. Ryou M, Fong DG, Pai RD, Tavakkolizadeh A, Rattner DW, Thompson CC (2007) Dual-port distal pancreatectomy using a prototype endoscope and endoscopic stapler: a natural orifice transluminal endoscopic surgery (NOTES) survival study in a porcine model. Endoscopy 39:881–887

    CAS  PubMed  Google Scholar 

  69. Yonezawa J, Kaise M, Sumiyama K, Goda K, Arakawa H, Tajiri H (2006) A novel double-channel therapeutic endoscope (“R-scope”) facilitates endoscopic submucosal dissection of superficial gastric neoplasms. Endoscopy 38:1011–1015

    CAS  PubMed  Google Scholar 

  70. Lee SH, Gromski MA, Derevianko A, Jones DB, Pleskow DK, Sawhney M, Chuttani R, Matthes K (2010) Efficacy of a prototype endoscope with two deflecting working channels for endoscopic submucosal dissection: a prospective, comparative, ex vivo study. Gastrointest Endosc 72:155–160

    PubMed Central  PubMed  Google Scholar 

  71. Moyer MT, Haluck RS, Gopal J, Pauli EM, Mathew A (2010) Transgastric organ resection solely with the prototype R-scope and the self-approximating transluminal access technique. Gastrointest Endosc 72:170–176

    PubMed  Google Scholar 

  72. Trunzo JA, Poulose BK, McGee MF, Nikfarjam M, Schomisch SJ, Onders RP, Jin J, Chak A, Ponsky JL, Marks JM (2010) The diagnostic efficacy of natural orifice transluminal endoscopic surgery: is there a role in the intensive care unit? Surg Endosc 24:2485–2491

    PubMed  Google Scholar 

  73. Weitzner B, Smith PJ, Golden JB, Intoccia BJ, Suon N, Barenboym M (2008) Direct drive instruments and methods of use. Boston Scientific Scimed, Inc., MN

  74. Weitzner B, Smith PJ, Golden JB, Intoccia BJ, Suon N, Shaw WJ (2012) Direct drive endoscopy systems and methods. Boston Scientific Scimed, Inc., Maple Grove

    Google Scholar 

  75. Spaun GO, Swanstrom LL (2008) Quo vadis NOTES? Eur Surg Acta Chir Austriaca 40:211–219

    Google Scholar 

  76. Fernandez-Esparrach G, Shaikh SN, Soler NJ, Hungness ES, Rothstein RI, Swanstrom LL, Thompson CC (2008) A new multi-tasking platform for advanced intralumenal and NOTES procedures: learning curve assessment, and accuracy in an endoscopic mucosal resection model. Gastrointest Endosc 67:AB146–AB147

    Google Scholar 

  77. Rothstein RI, Swanstrom LL (2008) Use of the direct drive endoscopic system (DDES) for in-vivo mucosal resection in a porcine model. Gastrointest Endosc 67:AB146

    Google Scholar 

  78. Richard PD (2010) Flexible port seal. Tyco Healthcare Group LP, North Haven

    Google Scholar 

  79. Azarbarzin K, Mastri D, Stearns R (2010) Surgical instruments with improved dexterity for use in minimally invasive surgical procedures. SurgiQuest, Inc., Orange

    Google Scholar 

  80. Stolzenburg JU, Kallidonis P, Oh MA, Ghulam N, Do M, Haefner T, Dietel A, Till H, Sakellaropoulos G, Liatsikos EN (2010) Comparative assessment of laparoscopic single-site surgery instruments to conventional laparoscopic in laboratory setting. J Endourol 24:239–245

    PubMed  Google Scholar 

  81. Desai MM, Rao PP, Aron M, Pascal-Haber G, Desai MR, Mishra S, Kaouk JH, Gill IS (2008) Scarless single port transumbilical nephrectomy and pyeloplasty: first clinical report. BJU Int 101:83–88

    PubMed  Google Scholar 

  82. Gill IS, Canes D, Aron M, Haber GP, Goldfarb DA, Flechner S, Desai MR, Kaouk JH, Desai MM (2008) Single port transumbilical (E-NOTES) donor nephrectomy. J Urol 180:637–641; discussion 641

  83. Goel RK, Kaouk JH (2008) Single port access renal cryoablation (SPARC): a new approach. Eur Urol 53:1204–1209

    PubMed  Google Scholar 

  84. Kaouk JH, Haber GP, Goel RK, Desai MM, Aron M, Rackley RR, Moore C, Gill IS (2008) Single-port laparoscopic surgery in urology: initial experience. Urology 71:3–6

    PubMed  Google Scholar 

  85. Rane A, Rao P, Rao P (2008) Single-port-access nephrectomy and other laparoscopic urologic procedures using a novel laparoscopic port (R-port). Urology 72:260–263; discussion 263–264

  86. Curcillo PG II, King SA, Podolsky ER, Rottman SJ (2009) Single port access (SPA) minimal access surgery through a single incision. Surg Technol Int 18:19–25

    PubMed  Google Scholar 

  87. Mereu L, Angioni S, Melis GB, Mencaglia L (2010) Single access laparoscopy for adnexal pathologies using a novel reusable port and curved instruments. Int J Gynecol Obstet 109:78–80

    Google Scholar 

  88. Williams MS, Stack RS, Orth GA, Smith JA, Glenn RA, Fifer DW, Athas WL, Pryor A (2011) System and method for multi-instrument surgical access. Patent US20110118545A1

  89. Williams MS, Stack RS, Orth GA, Smith JA, Glenn RA, Fifer DW, Athas WL, Pryor A (2011) Procedural cannula and support system for surgical procedures. Patent US20110066173A1

  90. Knight J, Tunitsky-Britton E, Muffly T, Michener CM, Escobar PF (2011) Single-port gynecologic surgery with a novel surgical platform. Surg Innov 19:316–322

  91. Pryor AD, Tushar JR, DiBernardo LR (2010) Single-port cholecystectomy with the TransEnterix SPIDER: simple and safe. Surg Endosc 24:917–923

    PubMed Central  PubMed  Google Scholar 

  92. Salas N, Gorin MA, Gorbatiy V, Castle SM, Bird VG, Leveillee RJ (2011) Laparoendoscopic single site nephrectomy with the SPIDER surgical system: engineering advancements tested in a porcine model. J Endourol 25:739–742

    PubMed  Google Scholar 

  93. Leveillee RJ, Castle SM, Gorin MA, Salas N, Gorbatiy V (2011) Initial experience with laparoendoscopic single-site simple nephrectomy using the TransEnterix SPIDER surgical system: assessing feasibility and safety. J Endourol 25:923–925

    PubMed  Google Scholar 

  94. Dejima T, Matsuno K, Takemoto S (2011) Medical treatment endoscope. Olympus Medical Systems Corp., Tokyo

    Google Scholar 

  95. Fuchs K-H, Breithaupt W (2012) Transgastric small bowel resection with the new multitasking platform EndoSAMURAI (TM) for natural orifice transluminal endoscopic surgery. Surg Endosc 26:2281–2287

    PubMed  Google Scholar 

  96. Ikeda K, Sumiyama K, Tajiri H, Yasuda K, Kitano S (2011) Evaluation of a new multitasking platform for endoscopic full-thickness resection. Gastrointest Endosc 73:117–122

    PubMed  Google Scholar 

  97. Marescaux JFB, Melanson JS, Dallemagne B, Leroy J, Mutter D, Barry JP, Storz S, Leonhard M (2008) Endoscope system with pivotable arms. Karl Storz Endovision, Inc., Charlton

    Google Scholar 

  98. Marescaux JFB, Melanson JS, Dallemagne B, Leroy J, Mutter DRDM, Barry JP, Storz S, Leonhard M (2009) Articulating endoscope instrument. Karl Storz Endovision, Inc., Charlton

    Google Scholar 

  99. Perretta S, Dallemagne B, Barry B, Marescaux J (2013) The ANUBISCOPE(A (R)) flexible platform ready for prime time: description of the first clinical case. Surg Endosc 27:2630

    PubMed  Google Scholar 

  100. Farritor SM, Lehman A, Rentschler M (2009) Multifunctional operational component for robotic devices. University of Nebraska Medical Center, Nebraska

  101. Farritor SM, Rentschler M, Lehman A, Platt SR, Hawks J (2012) Methods, systems, and devices for surgical access and procedures. The Board of Regents of the University of Nebraska (UNeMed), Lincoln

    Google Scholar 

  102. Prisco GM, Gerbi CR, Rogers TW, Steger JR (2011) Curved cannula robotic surgical system e.g. multi-arm robotic surgical system, for performing e.g. single port minimally invasive surgery, has curved cannulas that are moved by associated robotic manipulators around centers of motion. Intuitive Surgical, Inc.; Intuitive Surgical Operations, Inc., Sunnyvale

    Google Scholar 

  103. Cestari A, Buffi NM, Lista G, Lughezzani G, Larcher A, Lazzeri M, Sangalli M, Rigatti P, Guazzoni G (2012) Feasibility and preliminary clinical outcomes of robotic laparoendoscopic single-site (R-LESS) pyeloplasty using a new single-port platform. Eur Urol 62:175–179

    PubMed  Google Scholar 

  104. Konstantinidis KM, Hirides P, Hirides S, Chrysocheris P, Georgiou M (2012) Cholecystectomy using a novel Single-Site(A (R)) robotic platform: early experience from 45 consecutive cases. Surg Endosc 26:2687–2694

    PubMed  Google Scholar 

  105. Kroh M, El-Hayek K, Rosenblatt S, Chand B, Escobar P, Kaouk J, Chalikonda S (2011) First human surgery with a novel single-port robotic system: cholecystectomy using the da Vinci Single-Site platform. Surg Endosc 25:3566–3573

    PubMed  Google Scholar 

  106. Morel P, Hagen ME, Bucher P, Buchs NC, Pugin F (2011) Robotic single-port cholecystectomy using a new platform: initial clinical experience. J Gastrointest Surg 15:2182–2186

    PubMed  Google Scholar 

  107. Spinoglio G, Lenti LM, Maglione V, Lucido FS, Priora F, Bianchi PP, Grosso F, Quarati R (2012) Single-site robotic cholecystectomy (SSRC) versus single-incision laparoscopic cholecystectomy (SILC): comparison of learning curves. First European experience. Surg Endosc 26:1648–1655

    PubMed  Google Scholar 

  108. Wren SM, Curet MJ (2011) Single-port robotic cholecystectomy results from a first human use clinical study of the new da Vinci single-site surgical platform. Arch Surg Chic 146:1122–1127

    Google Scholar 

  109. Wales KS, Boudreaux CP (2006) Surgical instrument with articulating shaft with single pivot closure and double pivot frame ground. Ethicon Endo-Surgery, Inc., Cincinnati

    Google Scholar 

  110. Raman JD, Bensalah K, Bagrodia A, Stern JM, Cadeddu JA (2007) Laboratory and clinical development of single keyhole umbilical nephrectomy. Urology 70:1039–1042

    PubMed  Google Scholar 

  111. Stolzenburg J-U, Kallidonis P, Hellawell G, Do M, Haefner T, Dietel A, Liatsikos EN (2009) Technique of laparoscopic–endoscopic single-site surgery radical nephrectomy. Eur Urol 56:644–650

    PubMed  Google Scholar 

  112. Burbank WA (2010) Backend mechanism for four-cable wrist. Intuitive Surgical, Inc., Sunnyvale

    Google Scholar 

  113. Diolaiti N (2012) Method and system for moving a plurality of articulated instruments in tandem back towards an entry guide. Intuitive Surgical Operations, Inc., Sunnyvale

    Google Scholar 

  114. Box GN, Lee HJ, Santos RLS, Abraham JBA, Louie MK, Gamboa AJR, Alipanah R, Deane LA, McDougall EM, Clayman RV (2008) Rapid communication—robot-assisted NOTES nephrectomy: initial report. J Endourol 22:503–506

    PubMed  Google Scholar 

  115. Haber GP, Crouzet S, Kamoi K, Berger A, Aron M, Goel R, Canes D, Desai M, Gill IS, Kaouk JH (2008) Robotic NOTES (Natural Orifice Translumenal Endoscopic Surgery) in reconstructive urology: initial laboratory experience. Urology 71:996–1000

    PubMed  Google Scholar 

  116. Kaouk JH, Goel RK, Haber G-P, Crouzet S, Stein RJ (2009) Robotic single-port transumbilical surgery in humans: initial report. BJU Int 103:366–369

    PubMed  Google Scholar 

  117. White MA, Haber G-P, Kaouk JH (2010) Robotic single-site surgery. Curr Opin Urol 20:86–91

    PubMed  Google Scholar 

  118. Simaan N, Xu K, Goldman R, Allen P, Fowler D, Ding J (2011) Systems, devices, and methods for providing insertable robotic sensory and manipulation platforms for single port surgery. Trustees of Columbia University, New York

  119. Ding JA, Xu K, Goldman R, Allen P, Fowler D, Simaan N (2010) Design, simulation and evaluation of kinematic alternatives for insertable robotic effectors platforms in single port access surgery. In: IEEE international conference on robotics, pp 1053–1058

  120. Simaan N, Taylor R, Flint P (2004) High dexterity snake-like robotic slaves for minimally invasive telesurgery of the upper airway. Medical image computing and computer-assisted intervention—MICCAI 2004, Proceedings Pt 2, vol 3217, pp 17–24

  121. Xu K, Simaan N (2008) An investigation of the intrinsic force sensing capabilities of continuum robots. IEEE Trans Robot 24:576–587

    Google Scholar 

  122. Dumpert J, Lehman AC, Wood NA, Oleynikov D, Farritor SM, IEEE (2009) Semi-autonomous surgical tasks using a miniature in vivo surgical robot. In: IEEE engineering in medicine and biology society conference proceedings

  123. Lehman AC, Dumpert J, Wood NA, Visty AQ, Farritor SM, Varnell B, Oleynikov D (2009) Natural Orifice Translumenal Endoscopic Surgery with a miniature in vivo surgical robot. Surg Endosc 23:1649

    PubMed  Google Scholar 

  124. Lehman AC, Dumpert J, Wood NA, Redden L, Visty AQ, Farritor S, Varnell B, Oleynikov D (2009) Natural orifice cholecystectomy using a miniature robot. Surg Endosc 23:260–266

    PubMed  Google Scholar 

  125. Farritor SM, Lehman AC, Oleynikov D (2011) Miniature in vivo robots for NOTES; surgical robotics. In: Rosen J, Hannaford B, Satava RM (eds) Surgical Robotics. Springer, New York, pp 123–138

  126. Weitzner BD, Rogers GS, Solbjor A, Meglan D, Ailinger R, Brock DL, Lee W, Driscoll D (2004) Robotic medical instrument system. endoVia Medical, Inc., Norwood

    Google Scholar 

  127. Brock DL, Lee W (2005) Surgical instrument. endoVia Medical, Inc., Norwood

    Google Scholar 

  128. Rothstein RI, Ailinger RA, Peine W (2004) Computer-assisted endoscopic robot system for advanced therapeutic procedures. Gastrointest Endosc 59:AB113

    Google Scholar 

  129. Phee SJL, Low SC, Ho KY, Chung SC (2012) Robotic system for flexible endoscopy. Nanyang Technological University, Singapore

  130. Kencana AP, Phee SJ, Low SC, Sun ZL, Huynh VA, Ho KY, Chung SC (2008) Master and slave robotic system for natural orifice transluminal endoscopic surgery. In: 2008 IEEE conference on robotics, automation, and mechatronics, vol 1 and 2, pp 566–570

  131. Phee SJ, Low SC, Huynh VA, Kencana AP, Sun ZL, Yang K, IEEE (2009) Master and slave transluminal endoscopic robot (MASTER) for natural orifice transluminal endoscopic surgery (NOTES). IEEE, New York

    Google Scholar 

  132. Ho KY, Phee SJ, Shabbir A, Low SC, Huynh VA, Kencana AP, Yang K, Lomanto D, So BYJ, Wong YYJ, Chung SCS (2010) Endoscopic submucosal dissection of gastric lesions by using a Master and Slave Transluminal Endoscopic Robot (MASTER). Gastrointest Endosc 72:593–599

    PubMed  Google Scholar 

  133. Sun ZL, Ang RY, Lim EW, Wang Z, Ho KY, Phee SJ (2011) Enhancement of a master–slave robotic system for natural orifice transluminal endoscopic surgery. Ann Acad Med Singap 40:223–230

    PubMed  Google Scholar 

  134. Ho KY, Phee LS, Lomanto D, Low SC, Huynh VA, Kencana AP, Yang K, Rasouli M, Chung SCS (2009) Natural orifice transgastric endoscopic segmental hepatectomy using a through-the-scope intuitively controlled robotics-enhanced manipulator system. Gastrointest Endosc 69:AB162

    Google Scholar 

  135. Phee SJ, Ho KY, Lomanto D, Low SC, Huynh VA, Kencana AP, Yang K, Sun ZL, Chung SCS (2010) Natural orifice transgastric endoscopic wedge hepatic resection in an experimental model using an intuitively controlled master and slave transluminal endoscopic robot (MASTER). Surg Endosc 24:2293–2298

    CAS  PubMed  Google Scholar 

  136. Phee SJ, Reddy N, Chiu PWY, Rebala P, Rao GV, Wang Z, Sun ZL, Wong JYY, Ho KY (2012) Robot-assisted endoscopic submucosal dissection is effective in treating patients with early-stage gastric neoplasia. Clin Gastroenterol Hepatol 10:1117–1121

    PubMed  Google Scholar 

  137. Wang Z, Phee S, Lomanto D, Goel R, Rebala P, Sun Z, Trasti S, Reddy N, Wong J, Ho K (2012) Endoscopic submucosal dissection of gastric lesions by using a master and slave transluminal endoscopic robot: an animal survival study. Endoscopy 44:690–694

  138. Lehman AC, Wood NA, Farritor S, Goede MR, Oleynikov D (2011) Dexterous miniature robot for advanced minimally invasive surgery. Surg Endosc 25:119–123

    PubMed  Google Scholar 

  139. Lehman AC, Tiwari MM, Shah BC, Farritor SM, Nelson CA, Oleynikov D (2010) Recent advances in the CoBRASurge robotic manipulator and dexterous miniature in vivo robotics for minimally invasive surgery. Proc Inst Mech Eng C 224:1487–1494

    Google Scholar 

  140. Can S, Fiolka A, Mayer H, Knoll A, Schneider A, Wilhelm D, Meining A, Feussner H (2008) The mechatronic support system HVSPS and the way to NOTES. Minim Invasive Ther 17:341–345

    Google Scholar 

  141. Can S, Mayer H, Fiolka A, Schneider A, Wilhelm D, Feussner H, Knoll A (2009) The “Highly Versatile Single Port System” for laparoscopic surgery: introduction and first clinical application. In: VanderSloten J, Verdonck P, Nyssen M, Haueisen J (eds) 4th European conference of the International Federation for Medical and Biological Engineering. Springer, New York, pp 1650–1654

    Google Scholar 

  142. Sanchez LA, Petroni G, Piccigallo M, Scarfogliero U, Niccolini M, Liu C, Stefanini C, Zemiti N, Menciassi A, Poignet P, Dario P (2011) Real-time control and evaluation of a teleoperated miniature arm for Single Port Laparoscopy. In: Conference proceedings : annual international conference of the IEEE Engineering in Medicine and Biology Society, IEEE Engineering in Medicine and Biology Society Conference 2011, pp 7049–7053

  143. Petroni G, Niccolini M, Menciassi A, Dario P, Cuschieri A (2013) A novel intracorporeal assembling robotic system for single-port laparoscopic surgery. Surg Endosc 27:665–670

    PubMed  Google Scholar 

  144. Swain P, Park PO (2004) Endoscopic suturing. Best Pract Res Clin Gastroenterol 18:37–47

    PubMed  Google Scholar 

  145. Swain CP, Kadirkamanathan SS, Gong F, Lai KC, Ratani RS, Brown GJ, Mills TN (1994) Knot tying at flexible endoscopy. Gastrointest Endosc 40:722–729

    CAS  PubMed  Google Scholar 

  146. Berkelman P, Cinquin P, Boidard E, Troccaz J, Létoublon C, Ayoubi J-M (2003) Design, control and testing of a novel compact laparoscopic endoscope manipulator. Proc Inst Mech Eng I 217:329–341

    Google Scholar 

  147. Yamashita H, Kim D, Hata N, Dohi T (2003) Multi-slider linkage mechanism for endoscopic forceps manipulator. In: 2003 IEEE/RSJ international conference on intelligent robots and systems, 2003 Proceedings (IROS 2003), vol 2573, pp 2577–2582

  148. Schlaak HF, Rose A, Wohlleber C, Kassner S, Werthschutzky R (2009) A novel laparoscopic instrument with multiple degrees of freedom and intuitive control. 4th Eur Conf Int Fed Med Biol Eng 22:1660–1663

    Google Scholar 

  149. Yamashita H, Aoki E, Suzuki T, Nakazawa T, Kobayashie E, Hashizume M, Sakuma I, Dohi T (2005) Development of endoscopic forceps manipulator using multi-slider linkage mechanisms. J Jpn Soc Comput Aided Surg 7:201–204

    Google Scholar 

  150. Toledo L, Gossot D, Fritsch S, Revillon Y, Reboulet C (1999) Study of sustained forces and the working space of endoscopic surgery instruments. Ann Chir 53:587–597

    CAS  PubMed  Google Scholar 

  151. de Visser H, Heijnsdijk EA, Herder JL, Pistecky PV (2002) Forces and displacements in colon surgery. Surg Endosc 16:1426–1430

    PubMed  Google Scholar 

  152. Dev H, Sooriakumaran P, Tewari A, Rane A (2011) LESSons in minimally invasive urology. BJU Int 107:1555–1559

    PubMed  Google Scholar 

  153. McGee MF, Rosen MJ, Marks J, Onders RP, Chak A, Faulx A, Chen VK, Ponsky J (2006) A primer on natural orifice transluminal endoscopic surgery: building a new paradigm. Surg Innov 13:86–93

    PubMed  Google Scholar 

Download references

Acknowledgments

The research of Ewout A. Arkenbout and Paul Henselmans is supported by the Dutch Technology Foundation STW, which is a part of the Netherlands Organisation for Scientific Research (NWO), and which is partly funded by Ministry of Economic Affairs, Agriculture and Innovation (STW Project 12137). The research of Filip Jelínek was performed within the framework of CTMM, the Center for Translational Molecular Medicine, Project MUSIS (Grant 030-202).

Disclosures

Ir. E. A. Arkenbout, Ir. Paul Henselmans, Ir. Filip Jelínek, and Prof. Dr. Ir. Paul Breedveld have no conflicts of interest or financial ties to disclose.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ewout A. Arkenbout.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Arkenbout, E.A., Henselmans, P.W.J., Jelínek, F. et al. A state of the art review and categorization of multi-branched instruments for NOTES and SILS. Surg Endosc 29, 1281–1296 (2015). https://doi.org/10.1007/s00464-014-3816-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00464-014-3816-z

Keywords

Navigation