Skip to main content
Log in

Neuroanatomical correlates of laparoscopic surgery training

  • Published:
Surgical Endoscopy Aims and scope Submit manuscript

Abstract

Background

Better understanding of the brain regions involved in performing laparoscopic surgery is likely to provide important insights for improving laparoscopic training and assessment in the future. To our knowledge, this is the first study using real Fundamentals of Laparoscopy Training (FLS)-based laparoscopic surgery training tasks in the functional magnetic resonance imaging (fMRI) environment to provide extensive characterization of the brain regions involved in this specific task execution.

Methods

Nine right-handed subjects practiced five FLS-modified laparoscopic surgery-training tasks with a training box for ten sessions in a simulated fMRI environment. Following the last practice session, they underwent 3 T fMRI while performing each task.

Results

An increase in the extent of brain activation was observed as the complexity of the tasks increased. Activation in the precentral gyrus, postcentral gyrus, and premotor regions was observed in the performance of all tasks, whereas the superior parietal lobe (SPL) was activated in the more complex tasks. The mean score and brain activation for performance with the dominant hand were larger than those observed during performance with the non-dominant hand.

Conclusions

Performing more complex tasks requires higher visual spatial ability and motor planning. Given the need for ambidextrous skills during laparoscopic tasks, the finding that lower scores and smaller brain recruitment occurred in executing tasks with the non-dominant hand than with the dominant hand suggests designing future training tasks to train the non-dominant hand more effectively. This may serve to improve overall performance in bi-manual tasks. Studies of this kind may facilitate the evidence-based development of strategies to improve the quality of laparoscopy training and assessment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Veldkamp R, Kuhry E, Hop WCJ, Jeekel J, Kazemier G, Bonjer HJ, Haglind E, Pahlman L, Cuesta MA, Msika S, Morino M, Lacy AM (2005) Laparoscopic surgery versus open surgery for colon cancer: short-term outcomes of a randomised trial. Lancet Oncol 6:477–484

    Article  PubMed  Google Scholar 

  2. Munz Y, Kumar BD, Moorthy K, Bann S, Darzi A (2004) Laparoscopic virtual reality and box trainers: is one superior to the other? Surg Endosc 18:485–494

    Article  CAS  PubMed  Google Scholar 

  3. Rosser JC, Rosser LE, Savalgi RS (1997) Skill acquisition and assessment for laparoscopic surgery. Arch Surg 132:200–204

    Article  CAS  PubMed  Google Scholar 

  4. Ohuchida K, Kenmotsu H, Yamamoto A, Sawada K, Hayami T, Morooka K, Takasugi SH, Konish K, Ieri S, Tanoue K, Iwamoto Y, Tanaka M, Hashizume M (2009) The frontal cortex is activated during learning of endoscopic procedures. Surg Endosc 23:2296–2301

    Article  PubMed  Google Scholar 

  5. Leff DR, Orihuela Espina F, Atallah L, Athanasiou T, Leong JJH, Darzi AAW, Yang GZ (2008) Modelling dynamic fronto-parietal behaviour during minimally invasive surgery—a Markovian trip distribution approach. Med Image Comput Comput Assist Interv 11:595–602

    PubMed  Google Scholar 

  6. Cui X, Bray S, Bryant DM, Glover GH, Reiss AL (2011) A quantitative comparison of NIRS and fMRI across multiple cognitive tasks. Neuroimage 54:2808–2821

    Article  PubMed Central  PubMed  Google Scholar 

  7. Huettel SA, Song AW, McCarthy G (2004) Functional magnetic resonance imaging, 1st edn. Sinauer, Sunderland

    Google Scholar 

  8. Debaerea F, Wenderotha N, Sunaertb S, Van Heckeb P, Swinnen SP (2004) Cerebellar and premotor function in bimanual coordination: parametric neural responses to spatiotemporal complexity and cycling frequency. Neuroimage 21:1416–1427

    Article  Google Scholar 

  9. Vakil E, Kahan Sh, Huberman M, Osimani A (2000) Motor and non-motor sequence learning in patients with basal ganglia lesions: the case of serial reaction time. Neuropsychologia 38:1–10

    Article  CAS  PubMed  Google Scholar 

  10. Wanzel KR, Hamstra SJ, Anastakis DJ, Matsumoto E, Cusimano M (2002) Effect of visual-spatial ability on learning of spatially-complex surgical skills. Lancet 359:230–231

    Article  PubMed  Google Scholar 

  11. Wanzel KR, Anastakis DJ, McAndrews MP, Grober ED, Sidhu RS, Taylor K, Mikulis DJ, Hamstra SJ (2007) Visual-spatial ability and fMRI cortical activation in surgery residents. Am J Surg 193:507–510

    Article  PubMed  Google Scholar 

  12. Botden S, Torab F, Buzink SN, Jakimowicz JJ (2008) The importance of haptic feedback in laparoscopic suturing training and the additive value of virtual reality simulation. Surg Endosc 22:1214–1222

    Article  PubMed  Google Scholar 

  13. Soper NJ, Fried GM (2008) The fundamentals of laparoscopic surgery: its time has come. Bull Am Coll Surg 93:30–32

    PubMed  Google Scholar 

  14. Scott DJ, Ritter M, Tesfay ST, Pimentel EA, Nagji A, Fried GM (2008) Certification pass rate of 100 % for fundamentals of laparoscopic surgery skills after proficiency-based training. Surg Endosc 22:1887–1893

    Article  PubMed  Google Scholar 

  15. Bahrami P, Schweizer TA, Tam F, Grantcharov TP, Cusimano MD, Graham SJ (2011) Functional MRI-compatible laparoscopic surgery training simulator. Magn Reson Med 65:873–881

    Article  PubMed  Google Scholar 

  16. Oldfield RC (1971) The assessment and analysis of handedness: the Edinburgh inventory. Neuropsychologia 9:97–114

    Article  CAS  PubMed  Google Scholar 

  17. Cox RW (1996) AFNI: software for analysis and visualization of functional magnetic resonance neuroimages. Comput Biomed Res 29:162–173

    Article  CAS  PubMed  Google Scholar 

  18. Martin JH (2003) Neuroanatomy: text and Atlas, 3rd edn. McGraw Hill, New York

    Google Scholar 

  19. Karimyan V, Orihuela-Espina F, Leff DR, Clark J, Sodergren M, Darzi A, Yang GZ (2012) Spatial awareness in Natural Orifice Transluminal Endoscopic Surgery (NOTES) navigation. Int J Surg 10:80–86

    Article  PubMed  Google Scholar 

  20. Tsuda H, Aoki T, Oku N, Kimura Y, Hatazawa J, Kinoshita H (2009) Functional brain areas associated with manipulation of a prehensile tool: a PET study. Hum Brain Mapp 30:2879–2889

    Article  PubMed  Google Scholar 

  21. Rushworth MFS, Walton ME, Kennerley SW, Bannerman DM (2004) Action sets and decisions in the medial frontal cortex. Trends Cognit Sci 8:410–417

    Article  CAS  Google Scholar 

  22. Mason MF, Norton MI, Van Horn JD, Wegner DM, Grafton ST, Macrae CN (2007) Wandering minds: the default network and stimulus-independent thought. Science 393:315

    Google Scholar 

  23. Buckner RL, JAndrews-Hanna JR, Schacter DL (2008) The brain’s default network: anatomy, function, and relevance to disease. Ann N Y Acad Sci 1124:1–38

    Article  PubMed  Google Scholar 

  24. Jäncke L, Petersc M, Himmelbacha M, Nösselta T, Shahb J, Steinmetz H (2000) fMRI study of bimanual coordination. Neuropsychologia 38:164–174

    Article  PubMed  Google Scholar 

  25. Gupta R, Cathelineau X, Robert F, Vallancien G (2004) Feedback from operative performance to improve training program of laparoscopic radical prostatectomy. J Endourol 18:836–839

    Article  CAS  PubMed  Google Scholar 

  26. Nieboer TE, Sari V, Kluivers KB, Weinans MJN, Vierhout ME, Stegeman DF (2012) A randomized trial of training the non-dominant upper extremity to enhance laparoscopic performance. Minim Invasive Ther 21:259–264

    Article  Google Scholar 

  27. Grafton ST, Hazeltine E, Ivry RB (2002) Motor sequence learning with the nondominant left hand: a PET functional imaging study. Exp Brain Res 146:369–378

    Article  PubMed  Google Scholar 

  28. Halsband U, Lange RK (2006) Motor learning in man: a review of functional and clinical studies. J Physiol Paris 99:414–424

    Article  PubMed  Google Scholar 

  29. Leff DR, Elwell CE, Orihuela-Espina F, Atallah L, Delpy DT, Darzi AW, Yang GZ (2008) Changes in prefrontal cortical behaviour depend upon familiarity on a bimanual co-ordination task: an fNIRS study. Neuroimage 39:805–813

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

The authors acknowledge the generous Grant support from the Natural Sciences and Engineering Research Council (NSERC) of Canada.

Disclosure

P. Bahrami, Dr. S.J. Graham, Dr. T.P. Grantcharov, Dr. M.D. Cusimano, Dr. O.D. Rotstein, A. Mansur, and Dr. T.A. Schweizer have no conflicts of interest or financial ties to disclose.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tom A. Schweizer.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bahrami, P., Graham, S.J., Grantcharov, T.P. et al. Neuroanatomical correlates of laparoscopic surgery training. Surg Endosc 28, 2189–2198 (2014). https://doi.org/10.1007/s00464-014-3452-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00464-014-3452-7

Keywords

Navigation