Skip to main content

Advertisement

Log in

Application of stereology to study the effects of pneumoperitoneum on peritoneum

  • Published:
Surgical Endoscopy Aims and scope Submit manuscript

Abstract

Background

Scanning electron microscopy is unable to provide sufficient data to obtain definitive results for research into the morphologic effect of pneumoperitoneum on peritoneum. To overcome this difficulty, we adopted stereology to examine the effect of the type of gas insufflated, pressure, duration, and gas flow on morphologic alterations of peritoneum.

Methods

Fifty SD rats were divided into ten groups. One group served as control. Pneumoperitoneum was established at 5 mmHg and 1.0 l/min gas flow for 1, 2 or 3 h with CO2 (in groups C1h, C2h, and C3h, respectively) or with He (in groups H1h, H2h, and H3h, respectively). CO2 pneumoperitoneum was further established at 8 mmHg and 1.0 l/min gas flow for 1 h (group C8p), at 5 mmHg and 2.0 l/min gas flow for 1 h (group C2f), and at 5 mmHg and 3.0 l/min gas flow for 1 h (group C3f). After the procedures, five specimens were sampled from anterior peritoneum and measured by stereological and electron-microscopic techniques.

Results

Groups H1h and C1h, H2h and C2h, and H3h and C3h, respectively, were the same in terms of area fraction of basal lamina exposed and diameter of mesothelial cells (P > 0.05). The magnitudes of peritoneal trauma in groups C2h, C3h, C8p, C2f, and C3f were significantly higher than that in group C1h (P < 0.01), and the same result was observed in groups H2h and H3h against group H1h (P < 0.01), and in group C3f against group C2f (P < 0.01). Furthermore, the area fractions of basal lamina exposed in groups C3h and H3h were remarkably higher than those in groups C2h and H2h, respectively (P < 0.01). The mechanism of basal lamina exposure comprises mesothelial cell desquamation and plasmatorrhexis.

Conclusions

Peritoneal morphologic trauma during pneumoperitoneum can be attributed to the pressure, duration, and gas flow instead of the type of gas insufflated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  1. Stocchi L, Nelson H (2000) Wound recurrences following laparoscopic-assisted colectomy for cancer. Arch Surg 135(8):948–958

    Article  CAS  PubMed  Google Scholar 

  2. Gitzelmann CA, Mendoza-Sagaon M, Talamini MA, Ahmad SA, Pegoli W Jr, Paidas CN (2000) Cell-mediated immune response is better preserved by laparoscopy than laparotomy. Surgery 127(1):65–71

    Article  CAS  PubMed  Google Scholar 

  3. Paget J (1889) The distribution of secondary growths in cancer of the breast. Lancet 1:571

    Article  Google Scholar 

  4. Bracke M, Vyncke B, Coopman P, Mareel M (1989) Strategies for the study of tumor invasion using an assay in vitro. Pathol Biol (Paris) 37(9):1022–1023

    CAS  Google Scholar 

  5. Griffiths JR, Mclntyre DJ, Howe FA, Stubbs M (2001) Why are cancers acidic? A carrier-mediated diffusion model for H+ transport in the interstitial fluid. Novartis Found Symp 240:46–62

    Article  CAS  PubMed  Google Scholar 

  6. Mareel M, Leroy A (2003) Clinical, cellular, and molecular aspects of cancer invasion. Physiol Rev 83(2):337–376

    CAS  PubMed  Google Scholar 

  7. Cunliffe WJ, Sugarbaker PH (1989) Gastrointestinal malignancy: rationale for adjuvant therapy using early postoperative intraperitoneal chemotherapy. Br J Surg 76(10):1082–1090

    Article  CAS  PubMed  Google Scholar 

  8. Volz J, Koster S, Spacek Z, Paweletz N (1999) Characteristic alterations of the peritoneum after carbon dioxide pneumoperitoneum. Surg Endosc 13(6):611–614

    Article  CAS  PubMed  Google Scholar 

  9. Suematsu T, Hirabayashi Y, Shiraishi N, Adachi Y, Kitamura H, Kitano S (2001) Morphology of the murine peritoneum after pneumoperitoneum vs laparotomy: a scanning electron microscopy study. Surg Endosc 15(9):954–958

    Article  CAS  PubMed  Google Scholar 

  10. Rosário MT, Ribeiro U Jr, Corbett CE, Ozaki AC, Bresciani CC, Zilberstein B, Gama-Rodrigues JJ (2006) Does CO2 pneumoperitoneum alter the ultra-structuture of the mesothelium? J Surg Res 133(2):84–88

    Google Scholar 

  11. Ott DE (2004) The peritoneum and the pneumoperitoneum: a review to improve clinical outcome. Gynecol Surg 1:101–106

    Article  Google Scholar 

  12. Ordemann J, Jakob J, Braumann C, Kilian M, Bachmann S, Jacobi CA (2004) Morphology of the rat peritoneum after carbon dioxide and helium pneumoperitoneum: a scanning electron microscopic study. Surg Endosc 18(9):1389–1393

    Article  CAS  PubMed  Google Scholar 

  13. Neuhaus SJ, Gupta A, Watson DI (2001) Helium and other alternative insufflation gases for laparoscopy. Surg Endosc 15(6):553–560

    Article  CAS  PubMed  Google Scholar 

  14. Gundersenn HJG, Bendtsen TF, Korbo L, Marcussen N, Moller A, Nielsen K, Nyengaard JR, Pakkenberg B, Sorensen FB, Vesterby A, West MJ (1988) Some new, simple and efficient stereological methods and their use in pathological research and diagnosis. AMPIS 96:379–394

    Google Scholar 

  15. Gundersen HJG (1977) Notes on the estimation of the numerical density of arbitrary particles: the edge effect. J Microsc 111:219–223

    Google Scholar 

  16. West MA, Hackam DJ, Baker J, Rodriguez JL, Bellingham J, Rotstein OD (1997) Mechanism of decreased in vitro murine macrophage cytokine release after exposure to carbon dioxide: relevance to laparoscopic surgery. Ann Surg 226(2):179–190

    Article  CAS  PubMed  Google Scholar 

  17. Neuhaus SJ, Watson DI, Ellis T, Rofe AM, Mathew G, Jamieson GG (2000) The influence of different gases on intraperitoneal immunity in tumour-bearing rats. World J Surg 24:1227–1231

    Article  CAS  PubMed  Google Scholar 

  18. Neuhaus SJ, Watson DI, Ellis T, Lafullarde T, Jamieson GG, Russell WJ (2001) Metabolic and immunological consequences of laparoscopy with helium or carbon dioxide insufflation: a randomized clinical study. ANZ J Surg 71(8):447–452

    Article  CAS  PubMed  Google Scholar 

  19. Wong YT, Shah PC, Birkett DH, Brams DM (2005) Peritoneal pH during laparoscopy is dependent on ambient gas environment. Surg Endosc 19(1):60–64

    Article  CAS  PubMed  Google Scholar 

  20. Kuntz C, Wunsch A, Bodeker C, Bay F, Rosch R, Windeler J, Herfarth C (2000) Effect of pressure and gas type on intraabdominal, subcutaneous, and blood pH in laparoscopy. Surg Endosc 14(4):367–371

    Article  CAS  PubMed  Google Scholar 

  21. Wildbrett P, Oh A, Naundorf D, Volk T, Jacobi CA (2003) Impact of laparoscopic gases on peritoneal microenvironment and essential parameters of cell function. Surg Endosc 17(1):78–82

    Article  CAS  PubMed  Google Scholar 

  22. Elkelani OA, Binda MM, Molinas CR, Koninckx PR (2004) Effect of adding more than 3% oxygen to carbon dioxide pneumoperitoneum on adhesion formation in a laparoscopic mouse model. Fertil Steril 82(6):1616–1622

    Article  PubMed  Google Scholar 

  23. Molinas CR, Tjwa M, Vanacker B, Binda MM, Elkelani O, Koninckx PR (2004) Role of CO(2) pneumoperitoneum-induced acidosis in CO(2) pneumoperitoneum-enhanced adhesion formation in mice. Fertil Steril 81(3):708–711

    Article  PubMed  Google Scholar 

  24. Matthews JB, Smith JA, Tally KJ, Menconi MJ, Nguyen H, Fink MP (1994) Chemical hypoxia increases junctional permeability and activates electrogenic ion transport in human intestinal epithelial monolayers. Surgery 116(2):150–157

    CAS  PubMed  Google Scholar 

  25. Jonecko A (1990) The human peritoneum and human peritonitis in ultrastructural and immunohistochemical studies. Z Mikrosk Anat Forsch 104(6):907–943

    CAS  PubMed  Google Scholar 

  26. Kaufmann OY (1982) Responses of peritoneal mesothelial cells in rats with aseptic and bacterial peritonitis. Bull Exp Biol Med 94:100–104

    Article  Google Scholar 

  27. Avital S, Itah R, Szomstein S, Rosenthal R, Inbar R, Sckornik Y, Weinbroum A (2009) Correlation of CO2 pneumoperitoneal pressures between rodents and humans. Surg Endosc 23(1):50–54

    Article  PubMed  Google Scholar 

  28. Reymond MA, Schneider C, Hohenberger W, Kockerling F (1997) Pathogenesis of puncture-site metastases after laparoscopy. Zentralbl Chir 122(5):387–394

    CAS  PubMed  Google Scholar 

  29. Gutt CN, Kim ZG, Hollander D, Bruttel T, Lorenz M (2001) CO2 environment influences the growth of cultured human cancer cells dependent on insufflation pressure. Surg Endosc 15(3):314–318

    Article  CAS  PubMed  Google Scholar 

  30. Wittich P, Steyerberg EW, Simons SH, Marquet RL, Bonjer HJ (2000) Intraperitoneal tumor growth is influenced by pressure of carbon dioxide pneumoperitoneum. Surg Endosc 14(9):817–819

    Article  CAS  PubMed  Google Scholar 

  31. Volz J, Koster S, Weiss M, Schmidt R, Urbaschek R, Melchert F, Albrecht M (1996) Pathophysiologic features of a pneumoperitoneum at laparoscopy: a swine model. Am J Obstet Gynecol 174(1):132–140

    Article  CAS  PubMed  Google Scholar 

  32. Ott DE (1991) Laparoscopic hypothermia. J Laparosc Surg 1(3):127–131

    CAS  Google Scholar 

  33. Lackey LW, Ott DE (2002) Terminal gas velocity during laparoscopy. J Am Assoc Gynecol Laparosc 9(3):297–305

    Article  PubMed  Google Scholar 

  34. Gray R, Ott DE, Henderson A, Cochran S, Roth C (1999) Severe local hypothermia from laparoscopic gas evaporative jet cooling: a mechanism to explain clinical observations. JSLS 3(3):171–177

    CAS  PubMed  Google Scholar 

  35. Ott DE (2003) Desertification of the peritoneum by thin-film evaporation during laparoscopy. JSLS 7(3):189–195

    PubMed  Google Scholar 

  36. Lessan K, Aguiar DJ, Oegema T, Siebenson L, Skubitz AP (1999) CD44 and beta1 integrin mediate ovarian carcinoma cell adhesion to peritoneal mesothelial cells. Am J Pathol 154(5):1525–1537

    Article  CAS  PubMed  Google Scholar 

  37. Strobel T, Cannistra SA (1999) Beta1-integrins partly mediate binding of ovarian cancer cells to peritoneal mesothelium in vitro. Gynecol Oncol 73(3):362–367

    Article  CAS  PubMed  Google Scholar 

  38. van den Tol PM, van Rossen EE, van Eijck CH, Bonthuis F, Marquet RL, Jeekel H (1998) Reduction of peritoneal trauma by using nonsurgical gauze leads to less implantation metastasis of spilled tumor cells. Ann Surg 227(2):242–248

    Article  PubMed  Google Scholar 

  39. Peng Y, Zheng M, Ye Q, Chen X, Yu B, Liu B (2009) Heated and humidified CO2 prevents hypothermia, peritoneal injury, and intra-abdominal adhesions during prolonged laparoscopic insufflations. J Surg Res 151(1):40–47

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors gratefully thank Prof. Yong Tang for stereological support. This work was supported by the Natural Science Foundation of China (NSFC 30972875) and the Natural Science Foundation of Chongqing Government (SCTC, 2009AB5035).

Disclosures

Authors Jiang Du, Pei-wu Yu, and Bo Tang have no conflicts of interest or financial ties to disclose.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pei-wu Yu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Du, J., Yu, Pw. & Tang, B. Application of stereology to study the effects of pneumoperitoneum on peritoneum. Surg Endosc 25, 619–627 (2011). https://doi.org/10.1007/s00464-010-1235-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00464-010-1235-3

Keywords

Navigation