Skip to main content

Peritoneal Organ-Anatomical and Physiological Considerations

  • Chapter
  • First Online:
Exploring Drug Delivery to the Peritoneum
  • 64 Accesses

Abstract

Understanding the anatomy and physiology of the peritoneum has a direct effect on the outcome of medical therapy and laparoscopic surgery. The structural organization of the peritoneum, the characteristics of the peritoneal cavity, and the composition and extent of the contained peritoneal fluid pave the path for new discoveries in diagnostic strategies, drug delivery methodologies, and refinement of surgical procedures. The enormous surface area of the peritoneum, and the presence of interconnected greater and lesser peritoneal sacs and recesses in the upper and lower abdomen may render exploration of the extent of cancer dissemination a complicated process, but at the same time present the opportunity to devise effective therapeutic measures that counter inflammatory process and limit dissemination of cancerous cells. Knowledge of the topography, relationships of intra- and retroperitoneal organs, cytoarchitecture of mesothelial cells, and regional variations is likely to enhance focused therapy, reduce postoperative complications, hospital stay, and associated economic cost. Corollary to this, the size, distribution, and the chemical composition of the normal peritoneal fluid allow practitioners to rapidly correlate abnormal findings to disease processes. The nature and site of pain elicited by peritoneal irritation due to localized or generalized pathologic processes may be in the form of a sharp and well-defined or diffuse, dull, and aching pain depending on diseased peritoneal region and stimulated nerves. Hematogenous, lymphatic, or exudative contents of the peritoneal cavity may indicate traumatic injury or inflammatory process that presents rebound tenderness and rigidity.

Maintenance of homeostasis of the peritoneal cavity requires a stable chemical composition of the peritoneal fluid, an optimum temperature, and relative humidity. This way, viscosity of the peritoneal fluid hand and hypothermia are controlled by limiting evaporation and eliminating desiccation. Further, preserving this peritoneal milieu can eliminate cellular inflammation and stress, and reduce pain by blocking the release of immune reactive substances related to cell injury and disruption. In view of the above, preserving moisture on peritoneal surfaces during surgical procedures contributes to a normal physiologic setting and ultimately hastens patient’s recovery.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Reymond MA. Pleura and peritoneum: the forgotten organs. Pleura Peritoneum. 2016;1:1–2.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Verger C. Peritoneal ultrastructure. In: Nolph KD, editor. Peritoneal dialysis. Boston: Martinus Nijhoff; 1985. p. 95–113.

    Chapter  Google Scholar 

  3. Henderson LW. The problem of peritoneal membrane area and permeability. Kidney Int. 1973;3:409–10.

    Article  CAS  PubMed  Google Scholar 

  4. Mion CM, Boen ST. Analysis of factors responsible for the formation of adhesions during chronic peritoneal dialysis. Am J Med Sci. 1965;250:675–9.

    Article  CAS  PubMed  Google Scholar 

  5. Knapowski J, Feder E, Simon M, Zabel M. Evaluation of the participation of parietal peritoneum in dialysis: physiological morphological and pharmacological data. Proc Eur Dial Trans Assoc. 1979;16:155–64.

    CAS  Google Scholar 

  6. Rubin J, Clawson M, Planch A, Jones Q. Measurements of peritoneal surface area in man and rats. Am J Med Sci. 1988;295:453–8.

    Article  CAS  PubMed  Google Scholar 

  7. Esperanca MJ, Collins DL. Peritoneal dialysis efficiency in relation to body weight. J Pediatr Surg. 1966;1:162–9.

    Article  Google Scholar 

  8. Ryan G, Grobety J, Majno G. Mesothelial injury and recovery. Am J Pathol. 1973;71:93–112.

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Michailova KN, Usunoff KG. Serosal membranes (Pleura, Pericardium, Peritoneum) normal structure, development and experimental pathology. In: Beck FF, Christ B, Clascá F, et al., editors. Advances in anatomy embryologyand cell biology, vol. 183; 2006. p. 1–143.

    Google Scholar 

  10. Aune S. Transperitoneal exchange. II. Peritoneal blood flow estimated by hydrogen gas clearance. Scand J Gastroenterol. 1970;5:99–104.

    Article  CAS  PubMed  Google Scholar 

  11. Granger DN, Ulrich M, Perry MA, Kvietys PR. Peritoneal dialysis solutions and feline splanchnic blood flow. Clin Exp Pharmacol Physiol. 1984;11(5):473–81.

    Article  CAS  PubMed  Google Scholar 

  12. Local and humoral control of blood flow by the tissues. In: Guyton AV, Hall JE, editors. Textbook of medical physiology, 11th ed. Philadephia: Elsevier Saunders, 2006;195–203.

    Google Scholar 

  13. Nolph KD, Popovich RP, Ghods AJ, Twardowski Z. Determinants of low clearances of small solutes during peritoneal dialysis. Kidney Int. 1978;13(2):117–23.

    Article  CAS  PubMed  Google Scholar 

  14. Stephenson RB. Microcirculation and exchange. In: Patton HD, Fuchs AF, Hille B, Scher AM, Steiner R, editors. Textbook of physiology. Philadelphia: WB Saunders; 1989. p. 911–23.

    Google Scholar 

  15. Bradley SE, Childs AW, Combes B, Cournand A, Wade OL, Wheeler HO. The effect of exercise on the splanchnic blood flow and splanchnic blood volume in normal man. Clin Sci (Lond). 1956;15(3):457–63.

    CAS  Google Scholar 

  16. Gokal R, Khanna R, Krediet RT, Nolph KD, editors. Textbook of peritoneal dialysis. 2nd ed. Kluwer; 2000. p. 107–33.

    Google Scholar 

  17. Zweifach BW. The microcirculation of the blood. Sci Am. 1959;1:54–60.

    Article  Google Scholar 

  18. Richardson. Basic circulatory physiology. Boston, MA: Little, Brown; 1976. p. 101–36.

    Google Scholar 

  19. Johnson PC, Wayland H. Regulation of blood flow in single capillaries. Am J Phys. 1967;212:1405–15.

    Article  CAS  Google Scholar 

  20. Gotloib L, Shostak A, Bar-Sella P, Eiali V. Heterogeneous density and ultrastructure of rabbit’s peritoneal microvasculature. Int J Artif Organs. 1984;7:123–5.

    Article  CAS  PubMed  Google Scholar 

  21. Miller FN. The peritoneal microcirculation. In: Nolph K, editor. Peritoneal dialysis. Boston: Martinus Nijhoff; 1985. p. 51–93.

    Chapter  Google Scholar 

  22. Buez S. An open cremaster muscle preparation for the study of blood vessels by in vivo microscopy. Microvasc Res. 1973;5:384–94.

    Article  Google Scholar 

  23. Smuje L, Zweifach BW, Intaglietta M. Micropressure and capillary filtration coefficients in single vessels of the cremaster muscle in the rat. Microvasc Res. 1970;2:96–110.

    Article  Google Scholar 

  24. Chambers R, Zwiefach BW. Functional activity of the blood capillary bed, with special reference to visceral tissue. Ann N Y Acad Sci. 1946;46:683–94.

    Article  Google Scholar 

  25. Chapter 14 Overview of the circulation; medical physics of pressure, flow, and resistance. In: Guyton AV, Hall JE, editors. Textbook of medical physiology, 11th ed. Philadephia: Elsevier Saunders, 2006.

    Google Scholar 

  26. Wolff JR. Ultrastructure of the terminal vascular bed as related to function. In: Kaley G, Altura BM, editors. Microcirculation, vol. I. Baltimore: University Park Press; 1977. p. 95–130.

    Google Scholar 

  27. Gotloib L, Shostak A, Bar-Sella P, Eiali V. Fenestrated capillaries in human parietal and rabbit diaphragmatic peritoneum. Nephron. 1985;41:200–2.

    Article  CAS  PubMed  Google Scholar 

  28. The microcirculation and the lymphatic system: capillary fluid exchange, interstitial fluim and lymph flow. In: Guyton AV, Hall JE, editors. Textbook of medical physiology, 11th ed. Philadephia: Elsevier Saunders, 2006:181–94.

    Google Scholar 

  29. Ott D. Laparoscopy and tribology: the effect of laparoscopic gas on peritoneal fluid. J Am Assoc Gynecol Laparosc. 2001;8:117–23.

    Article  CAS  PubMed  Google Scholar 

  30. Ott D, Garner R, Wright E. Unmodified carbon dioxide gas used during laparoscopy results in loss of peritoneal cell viability. JSLS. 2000;4:347.

    Google Scholar 

  31. Technau U, Scholz CB. Origin and evolution of endoderm and mesoderm. Int J Dev Biol. 2003;47:531–9.

    PubMed  Google Scholar 

  32. Lenfestey MW, Neu J. Gastrointestinal development: implications for management of preterm and term infants. Gastroenterol Clin N Am. 2018 Dec;47(4):773–91.

    Article  Google Scholar 

  33. Blackburn SC, Stanton MP. Anatomy and physiology of the peritoneum. Semin Pediatr Surg. 2014 Dec;23(6):326–30.

    Article  PubMed  Google Scholar 

  34. Hikspoors JPJM, Kruepunga N, Mommen GMC, Peeters JPWU, Hülsman CJM, Eleonore Köhler S, Lamers WH. The development of the dorsal mesentery in human embryos and fetuses. Semin Cell Dev Biol. 2019;92:18–26.

    Article  CAS  PubMed  Google Scholar 

  35. Kluth D, Jaeschke-Melli S, Fiegel H. The embryology of gut rotation. Semin Pediatr Surg. 2003 Nov;12(4):275–9.

    Article  CAS  PubMed  Google Scholar 

  36. Livani A, Angelis S, Skandalakis PN, Filippou D. The story retold: the Kocher manoeuvre. Cureus. 2022;14(9):e29409.

    PubMed  PubMed Central  Google Scholar 

  37. Davis NM, Kurpios NA, Sun X, Gros J, Martin JF, Tabin CJ. The chirality of gut rotation derives from left-right asymmetric changes in the architecture of the dorsal mesentery. Dev Cell. 2008 Jul;15(1):134–45.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Lange JF, Rooijens PGM, Koppert S, Kleinrensink GJ. The preperitoneal tissue dilemma in totally extraperitoneal (TEP) laparoscopic hernia repair: an anatomo-surgical study. Surg Endosc. 2002;16(6):927–30.

    Article  CAS  PubMed  Google Scholar 

  39. Asakage N. Paradigm shift regarding the transversalis fascia, preperitoneal space, and Retzius’ space. Hernia. 2018;22(3):499–506.

    Article  CAS  PubMed  Google Scholar 

  40. Chesbrough RM, Burkhard TK, Martinez AJ, Burks DD. Gerota versus Zuckerkandl: the renal fascia revisited. Radiology. 1989;173(3):845–6.

    Article  CAS  PubMed  Google Scholar 

  41. Lal P, Kajla RK, Chander J, Ramteke VK. Laparoscopic total extraperitoneal (TEP) inguinal hernia repair: overcoming the learning curve. Surg Endosc. 2004;18(4):642–5.

    Article  PubMed  Google Scholar 

  42. Tirkes T, Sandrasegaran K, Patel AA, Hollar MA, Tejada JG, Tann M, Akisik FM, Lappas JC. Peritoneal and retroperitoneal anatomy and its relevance for cross-sectional imaging. Radiographics. 2012;32(2):437–51.

    Article  PubMed  Google Scholar 

  43. Patel RR, Planche K. Applied peritoneal anatomy. Clin Radiol. 2013;68(5):509–20.

    Article  CAS  PubMed  Google Scholar 

  44. Healy JC, Reznek RH. The peritoneum, mesenteries and omenta: normal anatomy and pathological processes. Eur Radiol. 1998;8(6):886–900.

    Article  CAS  PubMed  Google Scholar 

  45. Hall JC, Heel KA, Papadimitriou JM, Platell C. The pathobiology of peritonitis. Gastroenterology. 1998;114:185–96.

    Article  CAS  PubMed  Google Scholar 

  46. Beavis J, Harwood JL, Coles GA, Williams JD. Synthesis of phospholipids by human peritoneal mesothelial cells. Perit Dial Int. 1994;14:348–55.

    Article  CAS  PubMed  Google Scholar 

  47. Yonemura Y, Kawamura T, Bandou E, Tsukiyama G, Endou Y, Miura M. The natural history of free cancer cells in the peritoneal cavity. In: Gonzalez-Moreno S, editor. Advances in peritoneal surface oncology. Berlin/Heidelberg: Springer; 2007. p. 11–23.

    Chapter  Google Scholar 

  48. van Baal JO, Van de Vijver KK, Nieuwland R, van Noorden CJ, van Driel WJ, Sturk A, Kenter GG, Rikkert LG, Lok CA. The histophysiology and pathophysiology of the peritoneum. Tissue Cell. 2017;49(1):95–105.

    Article  PubMed  Google Scholar 

  49. Pannu HK, Oliphant M. The subperitoneal space and peritoneal cavity: basic concepts. Abdom Imaging. 2015;40(7):2710–22.

    Article  PubMed  PubMed Central  Google Scholar 

  50. Yoo E, Kim JH, Kim MJ, Yu JS, Chung JJ, Yoo HS, Kim KW. Greater and lesser omenta: normal anatomy and pathologic processes. Radiographics. 2007;27(3):707–20.

    Article  PubMed  Google Scholar 

  51. Calmat A, Leclerc du Sablon M, Honnart F, Leguerrier A, Cabrol C. Does the phrenico-gastric ligament exist? Bull Assoc Anat (Nancy). 1976;60(171):651–4.

    CAS  PubMed  Google Scholar 

  52. Micheau P. The greater omentum. Its role in reconstructive plastic surgery. Ann Chir Plast Esthet. 1995;40(2):192–207.

    CAS  PubMed  Google Scholar 

  53. Böyük A, Aday U, Gültürk B, Bozdağ A, Aksu A, Kutluer N. Effect of splenic flexure mobilization performed via medial-to-lateral and superior-to-inferior approach on early clinical outcomes in elective laparoscopic resection of rectal cancer. Wideochir Inne Tech Maloinwazyjne. 2019;14(4):509–15.

    PubMed  PubMed Central  Google Scholar 

  54. Jawad M, Yusuf MH, Al Doaibel KA, Nesaif FM, Alharbi AS. Wandering spleen: a rare case from the emergency department. Cureus. 2023;15(1):e33246.

    PubMed  PubMed Central  Google Scholar 

  55. Davies J, Neal S, Watson N, Wanderer A. Returns. BMJ. 2018;361:k2324.

    Article  Google Scholar 

  56. Hannesschläger GV, Bergmann W, Povysil B. Hemorrhagic lesions of the spleen in chronic and chronic recurrent pancreatitis. Dtsch Med Wochenschr. 1990;115(20):776–83.

    Article  PubMed  Google Scholar 

  57. Meyers MA, Charnsangavej C, Oliphant M. Meyers’ dynamic radiology of the abdomen. 6th ed. New York: Springer; 2011. p. 23–34.

    Book  Google Scholar 

  58. Byrnes KG, Walsh D, Dockery P, McDermott K, Coffey JC. Anatomy of the mesentery: current understanding and mechanisms of attachment. Semin Cell Dev Biol. 2019;92:12–7.

    Article  PubMed  Google Scholar 

  59. Congdon ED, Blumber R, Henry W. Fascia of fusion and elements of the fused enteric mesenteries in the human adult. Am J Anat. 1942;70:251–9.

    Article  Google Scholar 

  60. Standring S, Anand N, Birch R, et al. Chapter 62, Posterior abdominal wall and retroperitoneum. In: Gray’s anatomy: the anatomical basis of clinical practice. 41est ed. Edinburgh; New York: Elsevier Churchill Livingstone; 2015. p. 1145.

    Google Scholar 

  61. Bae SU, Saklani AP, Lim DR, et al. Laparoscopic-assisted versus open complete mesocolic excision and central vascular ligation for right-sided colon cancer. Ann Surg Oncol. 2014;21:2288–94.

    Article  PubMed  Google Scholar 

  62. Heald RJ, Moran BJ. Embryology and anatomy of the rectum. Semin Surg Oncol. 1998;15(02):66–71.

    Article  CAS  PubMed  Google Scholar 

  63. Lauchlan SC. The secondary Mullerian system. Obstet Gynecol Surv. 1972;27:133–46.

    Article  CAS  PubMed  Google Scholar 

  64. Sorensen T. The pouch of Douglas. Med J Aust. 2015;202(11):598.

    Article  PubMed  Google Scholar 

  65. Wang XJ, Zheng ZF, Chi P, Huang Y, Zhonghua Wei Chang Wai Ke Za Zhi. Anatomical observation of the left parietal peritoneum and its clinical significance in left retro-mesocolic space dissection. Medline. 2021;24(7):619.

    CAS  Google Scholar 

  66. Fischerova D. Ultrasound scanning of the pelvis and abdomen for staging of gynecological tumors: a review. Ultrasound Obstet Gynecol. 2011;38(3):246–66.

    Article  CAS  PubMed  Google Scholar 

  67. Sharma M, Patil A, Kumar A, Pathak A, Somani P, Sreesh SS, Rameshbabu CS. Imaging of infracolic and pelvic compartment by linear EUS. Endosc Ultrasound. 2019;8(3):161–71.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Kim S, Kim TU, Lee JW, Lee TH, Lee SH, Jeon TY, Kim KH. The perihepatic space: comprehensive anatomy and CT features of pathologic conditions. Radiographics. 2007;27:129–43.

    Article  PubMed  Google Scholar 

  69. Armstrong O, Hamel A, Grignon A, Peltier J, Hamal O, Letessier E, et al. Internal hernias: anatomical basis and clinical relevance. Surg Radiol Anat. 2007;29:333–7.

    Article  CAS  PubMed  Google Scholar 

  70. González R, Pardo P, Valeira E, Perez C, Santos R, Loves L, et al. Correct preoperative diagnosis of herniation through the foramen of Winslow: two case reports. Hernia. 2013;17:409–17.

    Article  Google Scholar 

  71. Le O. Patterns of peritoneal spread of tumor in the abdomen and pelvis. World J Radiol. 2013;5:106–12.

    Article  PubMed  PubMed Central  Google Scholar 

  72. Vikram R, Balachandran A, Bhosale PR, et al. Pancreas: peritoneal reflections, ligamentous connections, and pathways of disease spread. Radiographics. 2009;29:e34.

    Article  PubMed  Google Scholar 

  73. Nandagopalan PA, Job C, Prasanna MB. Peritoneal recesses of human duodenum. J Clin Diagn Res. 2016;10(11):AJ01–2.

    CAS  PubMed  PubMed Central  Google Scholar 

  74. Meyers MA. Distribution of intra-abdominal malignant seeding: dependency on dynamics of flow of ascitic fluid. Am J Roentgenol Radium Ther Nucl Med. 1973;119:198–206.

    Article  CAS  PubMed  Google Scholar 

  75. Williams PL, Bannister LH, Berry MM, Collins P, Dyson M, Dussek JE. Gray’s anatomy. 38th ed. Edinburgh: Churchill Livingstone; 1995. p. 1266–74.

    Google Scholar 

  76. Morison JR. The anatomy of right hypochondrium relating especially to operations for gall stones. Br Med J. 1894;2:968–71.

    Google Scholar 

  77. Morison R. On Gall-stones. Ann Surg. 1895;22(2):181–204.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Gilliam JW Jr, Schein CJ. The Morison pouch. Arch Surg. 1976;111(3):227–8.

    Article  PubMed  Google Scholar 

  79. Hajdu N, de Lacey G. The Rutherford Morison pouch; a characteristic appearance on abdominal radiographs. Br J Radiol. 1970;43(514):706–9.

    Article  CAS  PubMed  Google Scholar 

  80. Berek JS, Kehoe ST, Kumar L, Friedlander M. Cancer of the ovary, fallopian tube, and peritoneum. Int J Gynecol Obstet. 2018;143:59–78.

    Article  Google Scholar 

  81. Gore RM, Callen PW, Filly RA. Lesser sac fluid in predicting the etiology of ascites: CT findings. AJR. 1982;139:71–4.

    Article  CAS  PubMed  Google Scholar 

  82. Dunnick NR, Jones RB, Doppman JL, Speyer J, Myers CE. Intraperitoneal contrast infusion for assessment of intraperitoneal fluid dynamics. AJR. 1979;1(33):221–3.

    Article  Google Scholar 

  83. Bercovici B, Michel J, Miller J, Sacks TG. Antimicrobial activity of human peritoneal fluid. Surg Gynecol Obstet. 1975;141:885–7.

    CAS  PubMed  Google Scholar 

  84. Hosgood G, Salisbury SK, Cantwell HD, DeNicola DB. Intraperitoneal circulation and drainage in the dog. Vet Surg. 1989;18:261–8.

    Article  CAS  PubMed  Google Scholar 

  85. Last M, Kurtz L, Stein TA, Wise L. Effect of PEEP on the rate of thoracic duct lymph flow and clearance of bacteria from the peritoneal cavity. Am J Surg. 1983;145:126–30.

    Article  CAS  PubMed  Google Scholar 

  86. Abu-Hijleh MF, Habbal OA, Moqattash ST. The role of the diaphragm in lymphatic absorption from the peritoneal cavity. J Anat. 1995;186:453–67.

    PubMed  PubMed Central  Google Scholar 

  87. Flessner MF, Parker RJ, Sieber SM. Peritoneal lymphatic uptake of fibrinogen and erythrocytes in the rat. Am J Phys. 1983;244:H89–96.

    CAS  Google Scholar 

  88. Light RW, Macgregor MI, Luchsinger PC, Ball WC Jr. Pleural effusions: the diagnostic separation of transudates and exudates. Ann Intern Med. 1972;77(4):507–13.

    Article  CAS  PubMed  Google Scholar 

  89. Light RW. Pleural effusion. N Engl J Med. 2002;346(25):1971–7.

    Article  PubMed  Google Scholar 

  90. McGrath EE, Anderson PB. Diagnosis of pleural effusion: a systematic approach. Am J Crit Care. 2011;20(2):119–27.

    Article  PubMed  Google Scholar 

  91. Tarn AC, Lapworth R. Biochemical analysis of ascitic (peritoneal) fluid: what should we measure? Ann Clin Biochem. 2010;47(Pt 5):397–407.

    Article  CAS  PubMed  Google Scholar 

  92. Georgewill DA, Graham GA, Schoen I. Applicability of the Ektachem 400 analyzer for assaying analytes in miscellaneous body fluids. Clin Chem. 1988;34(12):2534–9.

    Article  CAS  PubMed  Google Scholar 

  93. Solass W, Horvath P, Struller F, Königsrainer I, Beckert S, Königsrainer A, Weinreich FJ, Schenk M. Functional vascular anatomy of the peritoneum in health and disease. Pleura Peritoneum. 2016;1(3):145–58.

    Article  PubMed  PubMed Central  Google Scholar 

  94. Parks DA, Jacobson ED. Physiology of the splanchnic circulation. Arch Intern Med. 1985;145:1278–81.

    Article  CAS  PubMed  Google Scholar 

  95. Jacobson EG. The gastrointestinal circulation. Annu Rev Physiol. 1968;30:133–46.

    Article  CAS  PubMed  Google Scholar 

  96. Hanson KM, Johnson PC. Pressure-flow relationships in isolated dog colon. Am J Phys. 1967;212(3):574–8.

    Article  CAS  Google Scholar 

  97. Bachus K, Doty E, Haney A. Differential effects of interleukin-1 alpha, tumor necrosis factor-alpha, indomethacin, hydrocortisone, and macrophage co-culture on the proliferation of human fibroblasts and peritoneal mesothelial cells. J Soc Gynecol Invest. 1995;2:636–42.

    CAS  Google Scholar 

  98. Berborowicz A, Rodela H, Karon J, et al. In vitro stimulation of the effect of peritoneal dialysis solution on mesothelial cells. Am J Kidney Dis. 1997;29:404–49.

    Article  Google Scholar 

  99. van Hinsburgh V, Kooistra T, Scheffer M, et al. Characterization and fibrinolytic properties of human omental tissue mesothelial cells. Comparison with endothelial cells. Blood. 1990;75:1490–7.

    Article  Google Scholar 

  100. Ott D. Reduced peritoneal inflammation using wet gas compared to cold dry gas as measured by C-reactive protein and interleukin-6. JSLS. 2003;7(S27):369.

    Google Scholar 

  101. Gregory NS, Harris AL, Robinson CR, et al. An overview of animal models of pain: disease models and outcome measures. J Pain. 2013;14(11):1255–69.

    Article  PubMed  Google Scholar 

  102. Giamberardino MA. Recent and forgotten aspects of visceral pain. Eur J Pain. 1999;3(2):77–92.

    Article  CAS  PubMed  Google Scholar 

  103. Oshi SK, Gebhart GF. Visceral pain. Curr Rev Pain. 2000;4(6):499–506.

    Article  Google Scholar 

  104. Gebhart GF. Pathobiology of visceral pain: molecular mechanisms and therapeutic implications IV. Visceral afferent contributions to the pathobiology of visceral pain. Am J Physiol Gastrointest Liver Physiol. 2000;278(6):G834–8.

    Article  CAS  PubMed  Google Scholar 

  105. Collett B. Visceral pain: the importance of pain management services. Br J Pain. 2013;7(1):6–7.

    Article  PubMed  PubMed Central  Google Scholar 

  106. Sikandar S, Dickenson AH. Visceral pain: the ins and outs, the ups and downs. Curr Opin Support Palliat Care. 2012;6(1):17–26.

    Article  PubMed  PubMed Central  Google Scholar 

  107. Sheehan D. The afferent nerve supply of the mesentery and its significance in the causation of abdominal pain. J Anat. 1933 Jan;67(Pt 2):233–49.

    CAS  PubMed  PubMed Central  Google Scholar 

  108. Arung W, Meurisse M, Detry O. Pathophysiology and prevention of postoperative peritoneal adhesions. World J Gastroenterol. 2011;17(41):4545–53.

    Article  PubMed  PubMed Central  Google Scholar 

  109. Beyene RT, Kavalukas SL, Barbul A. Intra-abdominal adhesions: anatomy, pathophysiology, and treatment. Curr Probl Surg. 2015;52(7):271–319.

    Article  PubMed  Google Scholar 

  110. Hellebrekers BW, et al. Pathogenesis of postoperative adhesion formation. Br J Surg. 2011;98:1503–16.

    Article  CAS  PubMed  Google Scholar 

  111. Schoenwolf GC, Bleyl SB, Brauer PR, et al. Development of the urogenital system. In: Larsens’s human embryology. 4th ed. Philadelphia: Churchill Livingstone Elsevier; 2009. p. 500–5.

    Google Scholar 

  112. Malas MA, Sulak O, Oztürk A. The growth of the testes during the fetal period. BJU Int. 1999;84(6):689–92.

    Article  CAS  PubMed  Google Scholar 

  113. Nemec SF, Nemec U, Weber M, Kasprian G, Brugger PC, Krestan CR, Rotmensch S, Rimoin DL, Graham JM, Prayer D. Male sexual development in utero: testicular descent on prenatal magnetic resonance imaging. Ultrasound Obstet Gynecol. 2011;38(6):688–94.

    Article  CAS  PubMed  Google Scholar 

  114. Wensing CJ. Testicular descent in some domestic mammals. 3. Search for the factors that regulate the gubernacular reaction. Proc K Ned Akad Wet C. 1973;76(2):196–202.

    CAS  PubMed  Google Scholar 

  115. Emmen JM, McLuskey A, Grootegoed JA, Brinkmann AO. Androgen action during male sex differentiation includes suppression of cranial suspensory ligament development. HumReprod. 1998;13(5):1272–80.

    CAS  Google Scholar 

  116. Kumagai J, Hsu SY, Matsumi H, Roh JS, Fu P, Wade JD, Bathgate RA, Hsueh AJ. INSL3/Leydig insulin-like peptide activates the LGR8 receptor important in testis descent. J Biol Chem. 2002;277(35):31283–6.

    Article  CAS  PubMed  Google Scholar 

  117. Heyns CF, Human HJ, De Klerk DP. Hyperplasia and hypertrophy of the gubernaculum during testicular descent in the fetus. J Urol. 1986;135(5):1043–7.

    Article  CAS  PubMed  Google Scholar 

  118. Heyns CF, Human HJ, Werely CJ, De Klerk DP. The glycosaminoglycans of the gubernaculum during testicular descent in the fetus. J Urol. 1990;143(3):612–7.

    Article  CAS  PubMed  Google Scholar 

  119. Nightingale SS, Western P, Hutson JM. The migrating gubernaculum grows like a limb bud. J Pediatr Surg. 2008;43:387–90.

    Article  PubMed  Google Scholar 

  120. Heyns CF. The gubernaculum during testicular descent in the human fetus. J Anat. 1987;153:93–112.

    CAS  PubMed  PubMed Central  Google Scholar 

  121. Yang XF, Liu JL. Anatomy essentials for laparoscopic inguinal hernia repair. Ann Transl Med. 2016;4(19):372.

    Article  PubMed  PubMed Central  Google Scholar 

  122. Rosen A, Nathan H, Luciansky E, Orda R. The inguinal region: anatomic differences in men and women with reference to hernia formation. Acta Anat (Basel). 1989;136:306.

    Article  CAS  PubMed  Google Scholar 

  123. Suzuki S, Furui S, Okinaga K, et al. Differentiation of femoral versus inguinal hernia: CT findings. AJR Am J Roentgenol. 2007;189:W78.

    Article  PubMed  Google Scholar 

  124. Schwaitzberg SD, Pokorny WJ, McGill CW, Harberg FJ. Gastroschisis and omphalocele. Am J Surg. 1982;144:650–4.

    Article  CAS  PubMed  Google Scholar 

  125. Facciorusso A, Antonino M, Orsitto E, Sacco R. Primary and secondary prophylaxis of spontaneous bacterial peritonitis: current state of the art. Expert Rev Gastroenterol Hepatol. 2019;13(8):751–9.

    Article  CAS  PubMed  Google Scholar 

  126. Zhang G, Jazwinski FA. Spontaneous bacterial peritonitis. JAMA. 2021;325(11):1118.

    Article  PubMed  Google Scholar 

  127. Tzamaloukas AH, Obermiller LE, Gibel LJ, et al. Peritonitis associated with intra-abdominal pathology in continuous ambulatory peritoneal dialysis patients. Perit Dial Int. 1993;13(Suppl 2):S335.

    Article  PubMed  Google Scholar 

  128. Pericleous M, Sarnowski A, Moore A, Fijten R, Zaman M. The clinical management of abdominal ascites, spontaneous bacterial peritonitis and hepatorenal syndrome: a review of current guidelines and recommendations. Eur J Gastroenterol Hepatol. 2016;28(3):e10–8.

    Article  PubMed  Google Scholar 

  129. Mandavdhare HS, Sharma V, Singh H, Dutta U. Underlying etiology determines the outcome in atraumatic chylous ascites. Intractable Rare Dis Res. 2018;7(3):177–81.

    Article  PubMed  PubMed Central  Google Scholar 

  130. Campbell D, Mudge DW, Craig JC, Johnson DW, Tong A, Strippoli GFM. Antimicrobial agents for preventing peritonitis in peritoneal dialysis patients. Cochrane Database Syst Rev. 2017;4:CD004679.

    PubMed  Google Scholar 

  131. Loftus TJ, Morrow ML, Lottenberg L, Rosenthal MD, Croft CA, Smith RS, Moore FA, Brakenridge SC, Borrego R, Efron PA, Mohr AM. The impact of prior laparotomy and intra-abdominal adhesions on bowel and mesenteric injury following blunt abdominal trauma. World J Surg. 2019;43(2):457–65.

    Article  PubMed  PubMed Central  Google Scholar 

  132. Vipond MN, Whawell SA, Thompson JN, Dudley HA. Effect of experimental peritonitis and ischemia on peritoneal fibrinolytic activity. Eur J Surg. 1994;160:471–7.

    CAS  PubMed  Google Scholar 

  133. Lotze MT, Zeh HJ, Rubartelli A. The grateful dead: damage-associated molecular pattern molecules and reduction/oxidation regulate immunity. Immunol Rev. 2007;220:60–81.

    Article  CAS  PubMed  Google Scholar 

  134. Evans TJ. The role of macrophages in septic shock. Immunology. 1996;195:655–9.

    CAS  Google Scholar 

  135. Cohen J. The immunopathogenesis of sepsis. Nature. 2002;420:885–91.

    Article  CAS  PubMed  Google Scholar 

  136. Srisskandan S, Cohen J. Gram positive sepsis. Infect Dis Clin N Am. 1999;13:397–412.

    Article  Google Scholar 

  137. Lobo V, Hunter-Behrend M, Cullnan E, Higbee R, Phillips C, Williams S, Perera P, Gharahbaghian L. Caudal edge of the liver in the right upper quadrant (RUQ) view is the most sensitive area for free fluid on the FAST exam. West J Emerg Med. 2017;18(2):270–80.

    Article  PubMed  PubMed Central  Google Scholar 

  138. Muysoms FE, Antoniou SA, Bury K, Campanelli G, Conze J, et al. European hernia society. European Hernia Society guidelines on the closure of abdominal wall incisions. Hernia. 2015;19(1):1–24.

    Article  CAS  PubMed  Google Scholar 

  139. Kurek Eken M, Özkaya E, Tarhan T, İçöz Ş, Eroğlu Ş, Kahraman ŞT, Karateke A. Effects of closure versus non-closure of the visceral and parietal peritoneum at cesarean section: does it have any effect on postoperative vital signs? A prospective randomized study. J Matern Fetal Neonatal Med. 2017;30(8):922–6.

    Article  PubMed  Google Scholar 

  140. Bektasoglu HK, Hasbahceci M, Yigman S, Yardimci E, Kunduz E, Malya FU. Nonclosure of the peritoneum during appendectomy may cause less postoperative pain: a randomized, Double-Blind Study. Pain Res Manag. 2019;9392780

    Google Scholar 

  141. Stenberg E, Szabo E, Ågren G, Ottosson J, Marsk R, Lönroth H, Boman L, Magnuson A, Thorell A, Näslund I. Closure of mesenteric defects in laparoscopic gastric bypass: a multicentre, randomised, parallel, open-label trial. Lancet. 2016;387(10026):1397–404.

    Article  PubMed  Google Scholar 

  142. Mortier S, De Vriese AS, Van de Voorde J, Schaub TP, Passlick-Deetjen J, Lameire NH. Hemodynamic effects of peritoneal dialysis solutions on the rat peritoneal membrane: role of acidity, buffer choice, glucose concentration, andglucose degradation products. J Am Soc Nephrol. 2002;13(2):480–9.

    Article  CAS  PubMed  Google Scholar 

  143. Zakariael R, Althani A, Fawzi AA, Fituri OM. Molecular mechanisms of peritoneal dialysis-induced microvascular vasodilation. Adv Perit Dial. 2014;30:98–109.

    Google Scholar 

  144. Miller FN, Nolph KD, Harris PD, Rubin J, Wiegman DL, Joshua IG, et al. Microvascular and clinical effects of altered peritoneal dialysis solutions. Kidney Int. 1979;15(6):630–9.

    Article  CAS  PubMed  Google Scholar 

  145. Mandl-Weber S, Cohen CD, Haslinger B, Kretzler M, Sitter T. Vascular endothelial growth factor production and regulation in human peritoneal mesothelial cells. Kidney Int. 2002;61:570–8.

    Article  CAS  PubMed  Google Scholar 

  146. Lim K, Palsson R, Siedlecki A. Dialysis initiation during the hospital stay. Hosp Med Clin. 2016;5(4):467–77.

    Article  Google Scholar 

  147. Perl J, Nessim SJ, Bargman JM. Kidney Int. 2011;79(8):814–24.

    Article  CAS  PubMed  Google Scholar 

  148. Pecoits-Filho R, et al. Capturing and monitoring global differences in untreated and treated end-stage kidney disease, kidney replacement therapy modality, and outcomes. Kidney Int Suppl. 2020;10:e3–9.

    Article  Google Scholar 

  149. Bello AK, et al. Status of care for end stage kidney disease in countries and regions worldwide: international cross-sectional survey. BMJ. 2019;367:l5873.

    Article  PubMed  Google Scholar 

  150. Bello AK, et al. Assessment of global kidney health care status. JAMA. 2017;317:1864–81.

    Article  PubMed  PubMed Central  Google Scholar 

  151. Cho Y, et al. Peritoneal dialysis use and practice patterns: an international survey study. Am J Kidney Dis. 2021;77:315–25.

    Article  PubMed  Google Scholar 

  152. Al Sahlawi M, et al. Variation in peritoneal dialysis-related peritonitis outcomes in the Peritoneal Dialysis Outcomes and Practice Patterns Study (PDOPPS). Am J Kidney Dis. 2022;79:45–55.e41.

    Article  PubMed  Google Scholar 

  153. Manera KE, et al. Establishing a core outcome set for peritoneal dialysis: report of the SONG-PD (Standardized Outcomes in Nephrology–Peritoneal Dialysis) Consensus Workshop. Am J Kidney Dis. 2020;75:404–12.

    Article  PubMed  Google Scholar 

  154. McCulloch MI, Nourse P, Argent AC. Use of locally prepared peritoneal dialysis (PD) fluid for acute PD in children and infants in Africa. Periton Dialysis Int. 2020;40:441–5.

    Article  Google Scholar 

  155. Cho Y, Johnson DW. Peritoneal dialysis-related peritonitis: towards improving evidence, practices, and outcomes. Am J Kidney Dis. August 2014;64(2):278–89.

    Article  PubMed  Google Scholar 

  156. Campbell D, Mudge DW, Jonathan CC, Johnson DW, Tong A, GFM S. Antimicrobial agents for preventing peritonitis in peritoneal dialysis patients. Cochrane Database Syst Rev. 2017;4:CD004679.

    PubMed  Google Scholar 

  157. Ottolino-Perry K, Tang N, Head R, Ng C, Arulanandam R, Angarita FA, et al. Tumor vascularization is critical for oncolytic vaccinia virus treatment of peritoneal carcinomatosis. Int J Cancer. 2014;134:717–30.

    Article  CAS  PubMed  Google Scholar 

  158. Salti GI, Naffouje SA. Feasibility of hand-assisted laparoscopic cytoreductive surgery and hyperthermic intraperitoneal chemotherapy for peritoneal surface malignancy. Surg Endosc. 2019;33(1):52–7.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Arslan, O.E. (2023). Peritoneal Organ-Anatomical and Physiological Considerations. In: Shegokar, R. (eds) Exploring Drug Delivery to the Peritoneum. Springer, Cham. https://doi.org/10.1007/978-3-031-31694-4_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-31694-4_1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-31693-7

  • Online ISBN: 978-3-031-31694-4

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics