Skip to main content
Log in

The Pathway from Anatomy and Physiology to Diagnosis: A Developmental Perspective on Swallowing and Dysphagia

  • Reviews
  • Published:
Dysphagia Aims and scope Submit manuscript

Abstract

Dysphagia results from diverse and distinct etiologies. The pathway from anatomy and physiology to clinical diagnosis is complex and hierarchical. Our approach in this paper is to show the linkages from the underlying anatomy and physiology to the clinical presentation. In particular, the terms performance, function, behavior, and physiology are often used interchangeably, which we argue is an obstacle to clear discussion of mechanism of pathophysiology. We use examples from pediatric populations to highlight the importance of understanding anatomy and physiology to inform clinical practice. We first discuss the importance of understanding anatomy in the context of physiology and performance. We then use preterm infants and swallow-breathe coordination as examples to explicate the hierarchical nature of physiology and its impact on performance. We also highlight where the holes in our knowledge lie, with the ultimate endpoint of providing a framework that could enhance our ability to design interventions to help patients. Clarifying these terms, and the roles they play in the biology of dysphagia will help both the researchers studying the problems as well as the clinicians applying the results of those studies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Lefton-Greif MA, Arvedson JC. Pediatric feeding and swallowing disorders: state of health, population trends, and application of the international classification of functioning, disability, and health. Semin Speech Lang. 2007;28:161–5.

    Article  Google Scholar 

  2. Jadcherla SR. Advances with neonatal aerodigestive science in the pursuit of safe swallowing in infants: invited review. Dysphagia. 2017;32:15–26.

    Article  Google Scholar 

  3. Irschick DJ. Measuring performance in nature: implications for studies of fitness within populations. Integr Comp Biol. 2003;43:396–407.

    Article  Google Scholar 

  4. Kingsolver JG, Huey RB. Introduction: the evolution of morphology, performance, and fitness. Integr Comp Biol. 2003;43:361–6.

    Article  Google Scholar 

  5. Lauder GV. On the inference of function from structure. In: Thomason JJ, editor. Functional morphology in vertebrate paleontology. Cambridge: Cambridge University Press; 1995. p. 1–18.

    Google Scholar 

  6. Biewener AA. Future directions for the analysis of musculoskeletal design and locomotor performance. J Morphol. 2002;252:38–51.

    Article  Google Scholar 

  7. Ferner K, Schultz JA, Zeller U. Comparative anatomy of neonates of the three major mammalian groups (monotremes, marsupials, placentals) and implications for the ancestral mammalian neonate morphotype. J Anat. 2017;231:798–822.

    Article  Google Scholar 

  8. German RZ, Crompton AW, Gould FD, Thexton AJ. Animal models for dysphagia studies: what have we learnt so far. Dysphagia. 2017;32:73–7.

    Article  Google Scholar 

  9. Madhoun LL, Siler-Wurst KK, Sitaram S, Jadcherla SR. Feed-thickening practices in NICUs in the current era: variability in prescription and implementation patterns. J Neonatal Nurs. 2015;21:255–62.

    Article  Google Scholar 

  10. Gosa MM, Carden HT, Jacks CC, Threadgill AY, Sidlovsky TC. Evidence to support treatment options for children with swallowing and feeding disorders: a systematic review. J Pediatr Rehabil Med. 2017;10:107–36.

    Article  Google Scholar 

  11. Lefton-Greif MA, Okelo SO, Wright JM, Collaco JM, McGrath-Morrow SA, Eakin MN. Impact of children’s feeding/swallowing problems: validation of a new caregiver instrument. Dysphagia. 2014;29:671–7.

    Article  Google Scholar 

  12. Jadcherla SR. Neonatal gastroenterology: challenges, controversies, and recent advances. Clin Perinatol. 2020;47:xvii–xviii.

    Article  Google Scholar 

  13. Shadmehr R, Smith MA, Krakauer JW. Error correction, sensory prediction, and adaptation in motor control. Annu Rev Neurosci. 2010;33:89–108.

    Article  CAS  Google Scholar 

  14. Shadmehr R, Krakauer JW. A computational neuroanatomy for motor control. Exp Brain Res. 2008;185:359–81.

    Article  Google Scholar 

  15. Roemmich RT, Bastian AJ. Two ways to save a newly learned motor pattern. J Neurophysiol. 2015;113:3519–30.

    Article  Google Scholar 

  16. Therrien AS, Wolpert DM, Bastian AJ. Effective reinforcement learning following cerebellar damage requires a balance between exploration and motor noise. Brain. 2015;139:101–14.

    Article  Google Scholar 

  17. Zimmet AM, Cao D, Bastian AJ, Cowan NJ. Cerebellar patients have intact feedback control that can be leveraged to improve reaching. Elife. 2020. https://doi.org/10.7554/eLife.53246.

    Article  Google Scholar 

  18. Cunningham ET, Donner MW, Jones B, Point SM. Anatomical and physiological overiew. In: Jones B, Donner MW, editors. Normal and abnormal swallowing. New York: Springer; 1991. p. 235.

    Google Scholar 

  19. Cunningham ET, Jones B. Anatomical and physiological overview. In: Jones B, editor. Normal and abnormal swallowing: imaging in diagnosis and therapy. 2nd ed. New York: Springer; 2003. p. 11–34.

    Chapter  Google Scholar 

  20. Miller AJ. Oral and pharyngeal reflexes in the mammalian nervous system: their diverse range in complexity and the pivotal role of the tongue. Crit Review Oral Biol Med. 2002;13:409–25.

    Article  CAS  Google Scholar 

  21. Miller AJ. The neurobiology of swallowing and dysphagia. Dev Disabil Res Rev. 2008;14:77–86.

    Article  Google Scholar 

  22. Jean A. Brain stem control of swallowing: neuronal network and cellular mechanisms. Physiol Rev. 2001;81:929–69.

    Article  CAS  Google Scholar 

  23. Thexton AJ, Crompton AW (1998) Control of swallowing. In: LInden R (ed) Frontiers of oral biology. Karger, Basle, pp 168-222

  24. Thexton AJ, Crompton AW, German RZ. Electromyographic activity during the reflex pharyngeal swallow in the pig: Doty and Bosma (1956) revisited. J Appl Physiol. 2007;102:587–600.

    Article  CAS  Google Scholar 

  25. Thexton AJ, Crompton AW, Owerkowicz T, German RZ. Impact of rhythmic oral activity on the timing of muscle activation in the swallow of the decerebrate pig. J Neurophysiol. 2009;101:1386–93.

    Article  Google Scholar 

  26. Sessle BJ, Hannam AG. Mastication and swallowing: biological and chemical correlates. Toronto: University of Toronto Press; 1976.

    Book  Google Scholar 

  27. Crompton AW, Thexton AJ, German RZ. Development of the movement of the epiglottis in infant and juvenile pigs. Zoology. 2008;111:339–49.

    Article  Google Scholar 

  28. Lau C. Development of suck and swallow mechanisms in infants. Ann Nutr Metab. 2015;66(Suppl 5):7–14.

    Article  CAS  Google Scholar 

  29. Lau C, Hurst N. Oral feeding in infants. Curr Probl Pediatr. 1999;29:105–24.

    Article  CAS  Google Scholar 

  30. Dodds WJ. Physiology of swallowing. Dysphagia. 1989;3:171–8.

    Article  CAS  Google Scholar 

  31. Dodds WJ, Taylor AJ, Stewart ET, Kern MK, Logemann JA, Cook IJ. Tipper and dipper types of oral swallows. AJR Am J Roentgenol. 1989;153:1197–9.

    Article  CAS  Google Scholar 

  32. Lieberman DE, McCarthy RC, Hiiemae KM, Palmer JB. Ontogeny of postnatal hyoid and larynx descent in humans. Arch Oral Biol. 2001;46:117–28.

    Article  CAS  Google Scholar 

  33. de Blacam C, Duggan L, Rea D, Beddy P, Orr DJA. Descent of the human larynx: An unrecognized factor in airway distress in babies with cleft palate? Int J Pediatr Otorhinolaryngol. 2018;113:208–12.

    Article  Google Scholar 

  34. Garand KLF, McCullough G, Crary M, Arvedson JC, Dodrill P. Assessment across the life span: the clinical swallow evaluation. Am J Speech Lang Pathol. 2020;29:919–33.

    Article  Google Scholar 

  35. Lefton-Greif MA, Arvedson JC. Pediatric feeding/swallowing: yesterday, today, and tomorrow. Semin Speech Lang. 2016;37:298–309.

    Article  Google Scholar 

  36. Smith TM, Machanda Z, Bernard AB, Donovan RM, Papakyrikos AM, Muller MN, Wrangham R. First molar eruption, weaning, and life history in living wild chimpanzees. Proc Natl Acad Sci USA. 2013;110:2787–91.

    Article  CAS  Google Scholar 

  37. Mayerl CJ, Steer KE, Chava AM, Bond LE, Edmonds CE, Gould FDH, Stricklen BM, Hieronymous TL, German RZ. The contractile patterns, anatomy and physiology of the hyoid musculature change longitudinally through infancy. Proc Biol Sci. 2021;288:20210052.

    CAS  Google Scholar 

  38. Cardini A, Polly PD. Larger mammals have longer faces because of size-related constraints on skull form. Nat Commun. 2013;4:2458.

    Article  Google Scholar 

  39. Iskander A, Sanders I. Morphological comparison between neonatal and adult human tongues. Ann Otol Rhinol Laryngol. 2003;112:768–76.

    Article  Google Scholar 

  40. Mu L, Sanders I. Human tongue neuroanatomy: nerve supply and motor endplates. Clin Anat. 2010;23:777–91.

    Article  Google Scholar 

  41. Sanders I, Mu L. A three-dimensional atlas of human tongue muscles. Anat Rec (Hoboken). 2013;296:1102–14.

    Article  Google Scholar 

  42. Sokoloff AJ, Daugherty M, Li H. Myosin heavy-chain composition of the human hyoglossus muscle. Dysphagia. 2010;25:81–93.

    Article  Google Scholar 

  43. Daugherty M, Luo Q, Sokoloff AJ. Myosin heavy chain composition of the human genioglossus muscle. J Speech Lang Hear Res. 2012;55:609–25.

    Article  Google Scholar 

  44. Slaughter K, Li H, Sokoloff AJ. Neuromuscular organization of the superior longitudinalis muscle in the human tongue. 1. Motor endplate morphology and muscle fiber architecture. Cells Tissues Organs. 2005;181:51–64.

    Article  Google Scholar 

  45. Mayerl CJ, Myrla AM, Bond LE, Stricklen BM, German RZ, Gould FDH. Premature birth impacts bolus size and shape through nursing in infant pigs. Pediatr Res. 2020;87:656–61.

    Article  Google Scholar 

  46. Mayerl CJ, Edmonds CE, Catchpole EA, Myrla AM, Gould FDH, Bond LE, Stricklen BM, German RZ. Sucking versus swallowing coordination, integration, and performance in preterm and term infants. J Appl Physiol. 1985;129(1383–1392):2020.

    Google Scholar 

  47. Amaizu N, Shulman R, Schanler R, Lau C. Maturation of oral feeding skills in preterm infants. Acta Paediatrica (Oslo, Norway: 1992). 2008;97:61–7.

    Article  CAS  Google Scholar 

  48. Gould FDH, Lammers AR, Mayerl CJ, German RZ. Specific vagus nerve lesion have distinctive physiologic mechanisms of dysphagia. Front Neurol. 2019;10:1301.

    Article  Google Scholar 

  49. German RZ, Campbell-Malone R, Crompton AW, Ding P, Holman S, Konow N, Thexton AJ. The concept of hyoid posture. Dysphagia. 2011;26:97–8.

    Article  Google Scholar 

  50. Adjerid K, Mayerl CJ, Gould FDH, Edmonds CE, Stricklen BM, Bond LE, German RZ. Does birth weight affect neonatal body weight, growth, and physiology in an animal model? PLoS ONE. 2021;16:e0246954.

    Article  CAS  Google Scholar 

  51. Lau C, Smith EO, Schanler RJ. Coordination of suck-swallow and swallow respiration in preterm infants. Acta Paediatrica (Oslo Norway: 1992). 2003;92:721–7.

    Article  CAS  Google Scholar 

  52. Bryant-Waugh R, Markham L, Kreipe RE, Walsh BT. Feeding and eating disorders in childhood. Int J Eat Disord. 2010;43:98–111.

    Google Scholar 

  53. Prabhakar V, Hasenstab KA, Osborn E, Wei L, Jadcherla SR. Pharyngeal contractile and regulatory characteristics are distinct during nutritive oral stimulus in preterm-born infants: Implications for clinical and research applications. Neurogastroenterol Motil. 2019;31:113650.

    Article  Google Scholar 

  54. Jensen PS, Gulati IK, Shubert TR, Sitaram S, Sivalingam M, Hasenstab KA, El-Mahdy MA, Jadcherla SR. Pharyngeal stimulus-induced reflexes are impaired in infants with perinatal asphyxia: Does maturation modify? Neurogastroenterol Motil. 2017;29:e13039.

    Article  Google Scholar 

  55. Davidson E, Hinton D, Ryan-Wenger N, Jadcherla S. Quality improvement study of effectiveness of cue-based feeding in infants with bronchopulmonary dysplasia in the neonatal intensive care unit. J Obstetr Gynecol Neonatal Nurs. 2013;42:629–40.

    Article  Google Scholar 

  56. Jadcherla SR, Chan CY, Moore R, Malkar M, Timan CJ, Valentine CJ. Impact of feeding strategies on the frequency and clearance of acid and nonacid gastroesophageal reflux events in dysphagic neonates. JPEN J Parenter Enteral Nutr. 2012;36:449–55.

    Article  CAS  Google Scholar 

  57. Humbert IA, Christopherson H, Lokhande A, German R, Gonzalez-Fernandez M, Celnik P. Human hyolaryngeal movements show adaptive motor learning during swallowing. Dysphagia. 2013;28:139–45.

    Article  Google Scholar 

  58. Garcia JM, Chambers E, Matta Z, Clark M. Viscosity measurements of nectar- and honey-thick liquids: product, liquid, and time comparisons. Dysphagia. 2005;20:325–35.

    Article  Google Scholar 

  59. Hoffman MR, Ciucci MR, Mielens JD, Jiang JJ, McCulloch TM. Pharyngeal swallow adaptations to bolus volume measured with high-resolution manometry. Laryngoscope. 2010;120:2367–73.

    Article  Google Scholar 

  60. Mayerl CJ, Gould FDH, Bond LE, Stricklen BM, Buddington RK, German RZ. Preterm birth disrupts the development of feeding and breathing coordination. J Appl Physiol. 1985;126(1681–1686):2019.

    Google Scholar 

  61. Mayerl CJ, Myrla AM, Bond LE, Stricklen BM, German RZ, Gould FDH. Premature birth impacts bolus size and shape through nursing in infant pigs. Pediatric Res. 2019;87:656–61.

    Article  Google Scholar 

  62. Edmonds CE, Catchpole EA, Gould FDH, Bond LE, Stricklen BM, German RZ, Mayerl CJ. Preterm Birth Impacts the Timing and Excursion of Oropharyngeal Structures during Infant Feeding. Integr Org Biol. 2020;2:obaa028.

    Article  CAS  Google Scholar 

  63. Mayerl CJ, Catchpole EA, Edmonds CE, Gould FDH, McGrattan KE, Bond LE, Stricklen BM, German RZ. The effect of preterm birth, recurrent laryngeal nerve lesion, and postnatal maturation on hyoid and thyroid movements, and their coordination in infant feeding. J Biomech. 2020;105:109786.

    Article  Google Scholar 

  64. Doty RW, Bosma JF. An electromyographic analysis of reflex deglutition. J Neurophysiol. 1956;19:44–60.

    Article  CAS  Google Scholar 

  65. Miller AJ. Neurophysiological basis of swallowing. Dysphagia. 1986;1:91–100.

    Article  Google Scholar 

  66. Inoue K, Yoshioka M, Yagi N, Nagami S, Oku Y. Using machine learning and a combination of respiratory flow, laryngeal motion, and swallowing sounds to classify safe and unsafe swallowing. IEEE Trans Biomed Eng. 2018;65:2529–41.

    Article  Google Scholar 

  67. Paydarfar D, Gilbert RJ, Poppel CS, Nassab PF. Respiratory phase resetting and airflow changes induced by swallowing in. J Physiol. 1995;483:273–88.

    Article  CAS  Google Scholar 

  68. Huff A, Reed MD, Smith BK, Brown EH Jr, Ovechkin AV, Pitts T. Strategies for the integration of cough and swallow to maintain airway protection in humans. Lung. 2018;196:601–8.

    Article  Google Scholar 

  69. Sai T, Isono S, Nishino T. Effects of withdrawal of phasic lung inflation during normocapnia and hypercapnia on the swallowing reflex in humans. J Anesth. 2004;18:82–8.

    Article  Google Scholar 

  70. Abu-Shaweesh JM. Maturation of respiratory reflex responses in the fetus and neonate. Semin Neonatol. 2004;9:169–80.

    Article  Google Scholar 

  71. Selley WG, Ellis RE, Flack FC, Brooks WA. Coordination of sucking, swallowing and breathing in the newborn: its. Br J Disord Commun. 1990;25:311–27.

    Article  CAS  Google Scholar 

  72. Gewolb IH, Vice FL. Maturational changes in the rhythms, patterning, and coordination of respiration and swallow during feeding in preterm and term infants. Dev Med Child Neurol. 2006;48:589–94.

    Article  Google Scholar 

  73. Ballester A, Gould F, Bond L, Stricklen B, Ohlemacher J, Gross A, DeLozier K, Buddington R, Buddington K, Danos N, German R. Maturation of the coordination between respiration and deglutition with and without recurrent laryngeal nerve lesion in an animal model. Dysphagia. 2018;33:627–35.

    Article  Google Scholar 

  74. Stricklen BM, Bond LE, Gould FDH, German RZ, Mayerl CJ. Swallow safety in infant pigs with and without recurrent laryngeal nerve lesion. Dysphagia. 2020;35:978–84.

    Article  Google Scholar 

  75. Bond LE, Mayerl CJ, Stricklen BM, German RZ, Gould FDH. Changes in the coordination between respiration and swallowing from suckling through weaning. Biol Lett. 2020;16:20190942.

    Article  Google Scholar 

  76. Humbert IA, Lokhande A, Christopherson H, German R, Stone A. Adaptation of swallowing hyo-laryngeal kinematics is distinct in oral vs. pharyngeal sensory processing. J Appl Physiol (Bethesda, Md: 1985). 2012;112:1698–705.

    Article  Google Scholar 

  77. Gould FDH, Lammers AR, Mayerl C, Ohlemacher J, German RZ. Muscle activity and kinematics show different responses to recurrent laryngeal nerve lesion in mammal swallowing. J Neurophysiol. 2020;124:1743–53.

    Article  Google Scholar 

  78. Ding P, Fung GS, Lin M, Holman SD, German RZ. The effect of bilateral superior laryngeal nerve lesion on swallowing: a novel method to quantitate aspirated volume and pharyngeal threshold in videofluoroscopy. Dysphagia. 2015;30:47–56.

    Article  Google Scholar 

  79. Ding P, Campbell-Malone R, Holman SD, Lukasik SL, Thexton AJ, German RZ. The effect of unilateral superior laryngeal nerve lesion on swallowing threshold volume. Laryngoscope. 2013;123:1942–7.

    Article  Google Scholar 

  80. Ding P, Campbell-Malone R, Holman SD, Lukasik SL, Fukuhara T, Gierbolini-Norat EM, Thexton AJ, German RZ. Unilateral superior laryngeal nerve lesion in an animal model of dysphagia and its effect on sucking and swallowing. Dysphagia. 2013;28:404–12.

    Article  Google Scholar 

  81. Storey AT. A functional analysis of sensory units innervating epiglottis and larynx. Exp Neurol. 1968;20:366–83.

    Article  CAS  Google Scholar 

  82. Sanders I, Mu L, Wu BL, Biller HF. The intramuscular nerve supply of the human lateral cricoarytenoid muscle. Acta Otolaryngol. 1993;113:679–82.

    Article  CAS  Google Scholar 

  83. Sanders I, Wu BL, Mu L, Biller HF. The innervation of the human posterior cricoarytenoid muscle: evidence for at least two neuromuscular compartments. Laryngoscope. 1994;104:880–4.

    Article  CAS  Google Scholar 

  84. Loucks TM, Poletto CJ, Saxon KG, Ludlow CL. Laryngeal muscle responses to mechanical displacement of the thyroid cartilage in humans. J Appl Physiol. 1985;99(922–930):2005.

    Google Scholar 

  85. Smith JC, Goldberg SJ, Shall MS. Phenotype and contractile properties of mammalian tongue muscles innervated by the hypoglossal nerve. Respir Physiol Neurobiol. 2005;147:253–62.

    Article  CAS  Google Scholar 

  86. Carrascal L, Nieto-Gonzalez JL, Cameron WE, Torres B, Nunez-Abades PA. Changes during the postnatal development in physiological and anatomical characteristics of rat motoneurons studied in vitro. Brain Res Brain Res Rev. 2005;49:377–87.

    Article  Google Scholar 

  87. Broussard DL, Lynn RB, Wiedner EB, Altschuler SM. Solitarial premotor neuron projections to the rat esophagus and pharynx: implications for control of swallowing. Gastroenterology. 1998;114:1268–75.

    Article  CAS  Google Scholar 

  88. Broussard DL, Altschuler SM. Central integration of swallow and airway-protective reflexes. Am J Med. 2000;108(Suppl 4a):62s–7s.

    Article  Google Scholar 

  89. Broussard DL, Altschuler SM. Brainstem viscerotopic organization of afferents and efferents involved in the control of swallowing. Am J Med. 2000;108(Suppl 4a):79s–86s.

    Article  Google Scholar 

  90. Kessler JP, Cherkaoui N, Catalin D, Jean A. Swallowing responses induced by microinjection of glutamate and glutamate. Exp Brain Res. 1990;83:151–8.

    Article  CAS  Google Scholar 

  91. Jean A. Brainstem organization of the swallowing network. Brain Behav Evol. 1984;25:109–16.

    Article  CAS  Google Scholar 

  92. Malandraki GA, Sutton BP, Perlman AL, Karampinos DC, Conway C. Neural activation of swallowing and swallowing-related tasks in healthy young adults: an attempt to separate the components of deglutition. Hum Brain Mapp. 2009;30:3209–26.

    Article  Google Scholar 

  93. Reed MD, English M, English C, Huff A, Poliacek I, Musselwhite MN, Howland DR, Bolser DC, Pitts T. The role of the cerebellum in control of swallow: evidence of inspiratory activity during swallow. Lung. 2019;197:235–40.

    Article  Google Scholar 

  94. Suzuki M, Asada Y, Ito J, Hayashi K, Inoue H, Kitano H. Activation of cerebellum and basal ganglia on volitional swallowing detected by functional magnetic resonance imaging. Dysphagia. 2003;18:71–7.

    Article  Google Scholar 

  95. Zald DH, Pardo JV. The functional neuroanatomy of voluntary swallowing. Ann Neurol. 1999;46:281–6.

    Article  CAS  Google Scholar 

  96. Ertekin C, Aydogdu I. Neurophysiology of swallowing. Clin Neurophysiol. 2003;114:2226–44.

    Article  Google Scholar 

  97. Arce-McShane FI, Ross CF, Takahashi K, Sessle BJ, Hatsopoulos NG. Primary motor and sensory cortical areas communicate via spatiotemporally coordinated networks at multiple frequencies. Proc Natl Acad Sci USA. 2016;113:5083–8.

    Article  CAS  Google Scholar 

  98. Thexton AJ, Crompton AW, German RZ. EMG activity in hyoid muscles during pig suckling. J Appl Physiol (Bethesda Md: 1985). 2012;112:1512–9.

    Article  CAS  Google Scholar 

  99. Thexton AJ, Crompton AW, German RZ. Transition from suckling to drinking at weaning: a kinematic and electromyographic study in miniature pigs. J Exp Zool. 1998;280:327–43.

    Article  CAS  Google Scholar 

  100. German RZ, Crompton AW, Thexton AJ. Integration of the reflex pharyngeal swallow into rhythmic oral activity in a neurologically intact pig model. J Neurophysiol. 2009;102:1017–25.

    Article  Google Scholar 

  101. German RZ, Crompton AW, Thexton AJ. Variation in EMG activity: a hierarchical approach. Integr Comp Bio. 2008;48:272–82.

    Google Scholar 

  102. DeLozier KR, Gould FDH, Ohlemacher J, Thexton AJ, German RZ. The impact of recurrent laryngeal nerve lesion on oropharyngeal muscle activity and sensorimotor integration in an infant pig model. J Appl Physiol. 1985;125(1):159–66.

    Article  Google Scholar 

  103. Holman SD, Waranch DR, Campbell-Malone R, Ding P, Gierbolini-Norat EM, Lukasik SL, German RZ. Sucking and swallowing rates after palatal anesthesia: an electromyographic study in infant pigs. J Neurophysiol. 2013;110:387–96.

    Article  Google Scholar 

  104. Holman SD, Konow N, Lukasik SL, German RZ. Regional Variation in Geniohyoid Muscle Strain During Suckling in the Infant Pig. J Exp Zool Part A. 2012;317:359–70.

    Article  Google Scholar 

  105. Wentzel SE, Konow N, German RZ. Regional differences in hyoid muscle activity and length dynamics during mammalian head shaking. J Exp Zool A Ecol Genet Physiol. 2011;315:111–20.

    Article  Google Scholar 

  106. van der Wilt GJ, Zielhuis GA. Merging evidence-based and mechanism-based medicine. Lancet. 2008;372:519–20.

    Article  Google Scholar 

  107. van den Engel-Hoek L, de Groot IJ, Esser E, Gorissen B, Hendriks JC, de Swart BJ, Geurts AC. Biomechanical events of swallowing are determined more by bolus consistency than by age or gender. Physiol Behav. 2012;106:285–90.

    Article  Google Scholar 

  108. Van Den Engel-Hoek L, Van Alfen N, De Swart BJ, De Groot IJ, Pillen S. Quantitative ultrasound of the tongue and submental muscles in children and young adults. Muscle Nerve. 2012;46:31–7.

    Article  Google Scholar 

  109. van den Engel-Hoek L, Harding C, van Gerven M, Cockerill H. Pediatric feeding and swallowing rehabilitation: an overview. J Pediatr Rehabil Med. 2017;10:95–105.

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by Eunice Kennedy Shriver National Institute of Child Health and Human Development, Grant/Award Numbers: HD088561 (RZG), HD096881 (RZG), and HD105922 (CJM). We are grateful to the reviewers who made excellent suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Z. German.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mayerl, C.J., Gould, F.D.H., Adjerid, K. et al. The Pathway from Anatomy and Physiology to Diagnosis: A Developmental Perspective on Swallowing and Dysphagia. Dysphagia 38, 33–41 (2023). https://doi.org/10.1007/s00455-022-10449-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00455-022-10449-x

Keywords

Navigation