Skip to main content
Log in

Accuracy of High-Resolution Pharyngeal Manometry Metrics for Predicting Aspiration and Residue in Oropharyngeal Dysphagia Patients with Poor Pharyngeal Contractility

  • Original Article
  • Published:
Dysphagia Aims and scope Submit manuscript

Abstract

Several physiological metrics can be derived from pharyngeal high-resolution impedance manometry (HRPM), but their clinical relevance has not been well established. We investigated the diagnostic performance of these metrics in relation to videofluoroscopic (VFS) assessment of aspiration and residue in patients with oropharyngeal dysphagia. We analyzed 263 swallows from 72 adult patients (22–91 years) with diverse medical conditions. Metrics of contractility, upper esophageal sphincter (UES) opening and relaxation, flow timing, intrabolus distension pressure, and a global Swallow Risk Index (SRI) were derived from pressure-impedance recordings using pressure-flow analysis. VFS data were independently scored for airway invasion and pharyngeal residue using the Penetration-Aspiration Scale and the Normalized Residue Ratio Scale, respectively. We performed multivariate logistic regression analyses to determine the relationship of HRPM metrics with radiological outcomes and receiver-operating characteristic (ROC) analysis to evaluate their diagnostic accuracy. We identified aspiration in 25% and pharyngeal residue in 84% of the swallows. Aspiration was independently associated with hypopharyngeal peak pressure < 65 mmHg (HypoPeakP) [adjusted odds ratio (OR) 5.27; 95% Confidence Interval (CI) (0.99–28.1); p = 0.051], SRI > 15 [OR 4.37; 95% CI (1.87–10.2); p < 0.001] and proximal esophageal contractile integral (PCI) < 55 mmHg·cm·s [OR 2.30; 95% CI (1.07–4.96); p = 0.034]. Pyriform sinus residue was independently predicted by HypoPeakP < 65 mmHg [OR 7.32; 95% CI (1.93–27.7); p = 0.003], UES integrated relaxation pressure (UES-IRP) > 3 mmHg [OR 2.96; 95% CI (1.49–5.88); p = 0.002], and SRI > 15 [OR 2.17; 95% CI (1.04–4.51); p = 0.039]. Area under ROC curve (AUC) values for individual HRPM metrics ranged from 0.59 to 0.74. Optimal cut-off values were identified. This study demonstrates the diagnostic value of certain proposed and adjunct HRPM metrics for identifying signs of unsafe and inefficient bolus transport in patients with oropharyngeal dysphagia.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Abbreviations

BPT:

Hypopharyngeal bolus presence time

DCL:

Hypopharyngeal distension to contraction latency

HCI:

Hypopharyngeal contractile integral

HRPM:

High-resolution pharyngeal manometry

HypoPeakP:

Hypopharyngeal mean peak pressure

IBP:

Hypopharyngeal intrabolus pressure

IRP:

Integrated relaxation pressure

MaxAd:

Maximum admittance

MBSImP:

Modified Barium Swallow Impairment Profile

MCI:

Mesopharyngeal contractile integral

NRRSp:

Normalized residue ratio scale (pyriform sinus residue)

NRRSv:

Normalized residue ratio scale (vallecular residue)

OPD:

Oropharyngeal dysphagia

PAS:

Penetration-Aspiration Scale

PCI:

Proximal esophageal contractile integral

PFA:

Pressure-flow analysis

PhCI:

Pharyngeal contractile integral

RT:

Relaxation time

SRI:

Swallow risk index

UES:

Upper esophageal sphincter

VCI:

Velopharyngeal contractile integral

VFS:

Videofluoroscopy

References

  1. Rommel N, Hamdy S. Oropharyngeal dysphagia: manifestations and diagnosis. Nat Rev Gastroenterol Hepatol. 2016;13:49–59. https://doi.org/10.1038/nrgastro.2015.199.

    Article  PubMed  Google Scholar 

  2. Cabre M, Serra-Prat M, Force L, Almirall J, Palomera E, Clave P. Oropharyngeal dysphagia is a risk factor for readmission for pneumonia in the very elderly persons: observational prospective study. J Gerontol A. 2014;69(3):330–7. https://doi.org/10.1093/gerona/glt099.

    Article  Google Scholar 

  3. Ekberg O, Hamdy S, Woisard V, Wuttge-Hannig A, Ortega P. Social and psychological burden of dysphagia: its impact on diagnosis and treatment. Dysphagia. 2002;17(2):139–46. https://doi.org/10.1007/s00455-001-0113-5.

    Article  PubMed  Google Scholar 

  4. Patel DA, Krishnaswami S, Steger E, Conover E, Vaezi MF, Ciucci MR, et al. Economic and survival burden of dysphagia among inpatients in the United States. Dis Esophagus. 2017. https://doi.org/10.1093/dote/dox131.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Smithard DG. Dysphagia: a geriatric giant? Med Clin Rev. 2016;2(15):1–7. https://doi.org/10.21767/2471-299X.1000014.

    Article  Google Scholar 

  6. Clavé P, Shaker R. Dysphagiass: current reality and scope. Nat Rev Gastroenterol Hepatol. 2015;12(5):259–70. https://doi.org/10.1038/nrgastro.2015.49.

    Article  PubMed  Google Scholar 

  7. Baijens L, Barikroo A, Pilz W. Intrarater and interrater reliability for measurements in videofluoroscopy of swallowing. Eur J Radiol. 2013;82(10):1683–95. https://doi.org/10.1016/j.ejrad.2013.05.009.

    Article  PubMed  Google Scholar 

  8. Mccullough GH, Wertz RT, Rosenbek JC, Mills RH, Webb WG, Ross KB. Inter- and intrajudge reliability for videofluoroscopic swallowing evaluation measures. Dysphagia. 2001;16:110–8. https://doi.org/10.1007/s004550010004.

    Article  CAS  PubMed  Google Scholar 

  9. Swan K, Cordier R, Brown T, Speyer R. Psychometric properties of visuoperceptual measures of videofluoroscopic and fibre-endoscopic evaluations of swallowing : a systematic review. Dysphagia. 2018. https://doi.org/10.1007/s00455-018-9918-3.

    Article  PubMed  Google Scholar 

  10. Cock C, Omari T. Diagnosis of swallowing disorders: how we interpret pharyngeal manometry. Curr Gastroenterol Rep. 2017;19(11):1–14. https://doi.org/10.1007/s11894-017-0552-2.

    Article  Google Scholar 

  11. Huckabee ML, Macrae P, Lamvik K. Expanding instrumental options for dysphagia diagnosis and research: ultrasound and manometry. Folia Phoniatr Logop. 2015;67:269–84. https://doi.org/10.1159/000444636.

    Article  PubMed  Google Scholar 

  12. Cook IJ. Combined pharyngeal impedance-manometry: has it finally come of age? Clin Gastroenterol Hepatol. 2011;9(10):813–5. https://doi.org/10.1016/j.cgh.2011.06.021.

    Article  PubMed  Google Scholar 

  13. Knigge MA, Marvin S, Thibeault SL. Safety and tolerability of pharyngeal high-resolution manometry. Am J Speech-Language Pathol. 2018. https://doi.org/10.1044/2018_AJSLP-18-0039.

    Article  Google Scholar 

  14. Mielens JD, Hoffman MR, Ciucci M, Jiang JJ, Mcculloch TM. Automated analysis of pharyngeal pressure data obtained with high-resolution manometry. Dysphagia. 2011;26:3–12. https://doi.org/10.1007/s00455-010-9320-2.

    Article  PubMed  Google Scholar 

  15. Nativ-Zeltzer N, Logemann JA, Zecker SG, Kahrilas PJ. Pressure topography metrics for high-resolution pharyngeal-esophageal manofluorography—a normative study of younger and older adults. Neurogastroenterol Motil. 2016;28:721–31. https://doi.org/10.1111/nmo.12769.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Omari TI, Ciucci M, Gozdzikowska K, Hernández E, Hutcheson K, Jones C, et al. High-resolution pharyngeal manometry and impedance: protocols and metrics—recommendations of a High-Resolution Pharyngeal Manometry International Working Group. Dysphagia. 2019. https://doi.org/10.1007/s00455-019-10023-y.

    Article  PubMed  Google Scholar 

  17. Omari TI, Dejaeger E, Van BD, Goeleven A, Davidson GP, Dent J, et al. A method to objectively assess swallow function in adults with suspected aspiration. Gastroenterology. 2011;140(5):1454–63. https://doi.org/10.1053/j.gastro.2011.02.051.

    Article  PubMed  Google Scholar 

  18. Omari TI, Dejaeger E, Van BD, Goeleven A, De CP, Smet MH, et al. A novel method for the nonradiological assessment of ineffective swallowing. Am J Gastroenterol. 2011;106(10):1796–802. https://doi.org/10.1038/ajg.2011.143.

    Article  PubMed  Google Scholar 

  19. Ferris L, Doeltgen S, Cock C, Rommel N, Schar M, Carrion S, et al. Modulation of pharyngeal swallowing by bolus volume and viscosity. Am J Physiol Gastrointest Liver Physiol. 2020. https://doi.org/10.1152/ajpgi.00270.2020.

    Article  PubMed  Google Scholar 

  20. Omari TI. Swallow Gateway for High Resolution Pharyngeal & Esophageal Manometry (Version 4) [Internet]. 2019 [cited 2019 Apr 29]. p. 1–47. Available from: https://www.swallowgateway.com/Swallow Gateway Instruction Manual_Version 4 (April 2019).pdf

  21. Cichero JAY, Lam P, Steele CM, Hanson B, Chen J, Dantas RO, et al. Development of international terminology and definitions for texture-modified foods and thickened fluids used in dysphagia management: the IDDSI Framework. Dysphagia. 2017;32(2):293–214. https://doi.org/10.1007/s00455-016-9758-y.

    Article  PubMed  Google Scholar 

  22. Singendonk M, Cock C, Bieckmann L, Szczesniak M, Benninga M, Omari T. Reliability of an online analysis platform for pharyngeal high-resolution impedance manometry recordings. Speech Lang Hear. 2018. https://doi.org/10.1080/2050571X.2018.1535564.

    Article  Google Scholar 

  23. Steele CM, Peladeau-Pigeon M, Barbon CA, Guida BT, MacDonald AN, Nascimento WV, et al. Reference values for healthy swallowing across the range from thin to extremely thick liquids. J Speech Lang Hear Res. 2019. https://doi.org/10.1044/2019_JSLHR-S-18-0448.

    Article  PubMed  PubMed Central  Google Scholar 

  24. Martin-Harris B, Brodsky MB, Michel Y, Castell DO, Schleicher M, Sandidge J, et al. MBS measurement tool for swallow impairment–MBSImp: establishing a standard. Dysphagia. 2008;23(4):392–405. https://doi.org/10.1007/s00455-008-9185-9.

    Article  PubMed  PubMed Central  Google Scholar 

  25. Rosenbek JC, Robbins JA, Roecker PDEB, Coyle JL, Wood JL. A penetration-aspiration scale. Dysphagia. 1996;98(11):93–8. https://doi.org/10.1007/BF00417897.

    Article  Google Scholar 

  26. Steele CM, Grace-Martin K. Reflections on clinical and statistical use of the Penetration-Aspiration Scale. Dysphagia. 2017;32(5):601–16. https://doi.org/10.1007/s00455-017-9809-z.

    Article  PubMed  PubMed Central  Google Scholar 

  27. Rommel N, Borgers C, Van BD, Goeleven A, Dejaeger E, Omari TI. Bolus Residue Scale: an easy-to-use and reliable videofluoroscopic analysis tool to score bolus residue in patients with dysphagia. Int J Otolaryngol. 2015. https://doi.org/10.1155/2015/780197.

    Article  PubMed  PubMed Central  Google Scholar 

  28. Pearson WG, Sonja J, Smith ZM, Steele CM. Image-based measurement of post-swallow residue: the Normalized Residue Ratio Scale. Dysphagia. 2013;28:167–77. https://doi.org/10.1007/s00455-012-9426-9.

    Article  PubMed  Google Scholar 

  29. Steele CM. NRRS Rating Instructions. 2015 [cited 2019 Apr 2]. http://steeleswallowinglab.ca/srrl/wp-content/uploads/2015/03/NRRS_Rating_Instructions.pdf

  30. Hosmer DW, Lemeshow S. Applied logistic regression. New York: Wiley; 1989.

    Google Scholar 

  31. Unal I. Defining an optimal cut-point value in ROC analysis: an alternative approach. Comput Math Methods Med. 2017;2017:1–14. https://doi.org/10.1155/2017/3762651.

    Article  Google Scholar 

  32. O’Rourke AK, Humphries K, Lazar A, Martin-Harris B. The pharyngeal contractile integral is a useful indicator of pharyngeal swallowing impairment. Neurogastroenterol Motil. 2017;29:1–7. https://doi.org/10.1111/nmo.13144.

    Article  Google Scholar 

  33. Kern MK, Balasubramanian G, Sanvanson P, Agrawal D, Wuerl A, Shaker R. Pharyngeal peristaltic pressure variability, operational range, and functional reserve. Am J Physiol Gastrointest Liver Physiol. 2019;312:516–25. https://doi.org/10.1152/ajpgi.00382.2016.

    Article  Google Scholar 

  34. Balasubramanian G, Sharma T, Kern M, Mei L, Sanvanson P, Shaker R. Characterization of pharyngeal peristaltic pressure variability during volitional swallowing in healthy individuals. Neurogastroenterol Motil. 2017;29(11):1–8. https://doi.org/10.1111/nmo.13119.

    Article  CAS  Google Scholar 

  35. Prabhakar V, Hasenstab KA, Osborn E, Wei L, Jadcherla SR. Pharyngeal contractile and regulatory characteristics are distinct during nutritive oral stimulus in preterm-born infants: Implications for clinical and research applications. Neurogastroenterol Motil. 2019. https://doi.org/10.1111/nmo.13650.

    Article  PubMed  PubMed Central  Google Scholar 

  36. Jadcherla SR, Prabhakar V, Hasenstab KA, Nawaz S, Das J, Kern M. Defining pharyngeal contractile integral during high-resolution manometry in neonates: a neuromotor marker of pharyngeal vigor. Pediatr Res. 2018;84:341–7. https://doi.org/10.1038/s41390-018-0097-6.

    Article  PubMed  PubMed Central  Google Scholar 

  37. Shaker R, Sanvanson P, Balasubramanian G, Kern M, Wuerl A, Hyngstrom A. Effects of laryngeal restriction on pharyngeal peristalsis and biomechanics: clinical implications. Am J Physiol Gastrointest Liver Physiol. 2016;310:1036–43. https://doi.org/10.1152/ajpgi.00010.2016.

    Article  Google Scholar 

  38. Regan J. Impact of sensory stimulation on pharyngo-esophageal swallowing biomechanics in adults with dysphagia: a high-resolution manometry study. Dysphagia. 2020;35(5):825–33. https://doi.org/10.1007/s00455-019-10088-9.

    Article  PubMed  Google Scholar 

  39. Agrawal D, Kern M, Edeani F, Balasubramanian G, Hyngstrom A, Sanvanson P, et al. Swallow strength training exercise for elderly: a health maintenance need. Neurogastroenterol Motil. 2017;2018:1–9. https://doi.org/10.1111/nmo.13382.

    Article  Google Scholar 

  40. Park C, Lee Y, Yi Y, Lee J, Park JH. Ability of high-resolution manometry to determine feeding method and to predict aspiration pneumonia in patients with dysphagia. Am J Gastroenterol [Internet]. 2017;112(7):1074–83. https://doi.org/10.1038/ajg.2017.81.

    Article  Google Scholar 

  41. Park D, Oh Y, Ryu S. Findings of abnormal videofluoroscopic swallowing study identified by high-resolution manometry parameters. Arch Phys Med Rehabil. 2016;97(3):421–8. https://doi.org/10.1016/j.apmr.2015.10.084.

    Article  PubMed  Google Scholar 

  42. Perry JL. Anatomy and physiology of the velopharyngeal mechanism. Semin Speech Lang. 2011;1(212):83–93. https://doi.org/10.1055/s-0031-1277712.

    Article  Google Scholar 

  43. Pearson WG, Hindson DF, Langmore SE, Zumwalt AC. Evaluating swallowing muscles essential for hyolaryngeal elevation by using muscle functional magnetic resonance imaging. Int J Radiat Oncol Biol Phys. 2013;85(3):735–40. https://doi.org/10.1016/j.ijrobp.2012.07.2370.

    Article  PubMed  Google Scholar 

  44. Doeltgen SH, Ong E, Scholten I, Cock C, Omari T. Biomechanical quantification of Mendelsohn maneuver and effortful swallowing on pharyngoesophageal function. Otolaryngology. 2017;157(5):816–23. https://doi.org/10.1177/0194599817708173.

    Article  Google Scholar 

  45. Peng L, Patel A, Kushnir V, Gyawali CP. Assessment of upper esophageal sphincter function on high-resolution manometry: identification of predictors of globus symptoms. J Clin Gastroenterol. 2015;49(2):95–100. https://doi.org/10.1097/MCG.0000000000000078.

    Article  PubMed  PubMed Central  Google Scholar 

  46. Chen S, Liang M, Zhang M, Tan N, Lin Y, Cao P. A study of proximal esophageal baseline impedance in identifying and predicting laryngopharyngeal reflux. J Gastroenterol Hepatol. 2020. https://doi.org/10.1111/jgh.14998.

    Article  PubMed  PubMed Central  Google Scholar 

  47. Pouderoux P, Kahrilas PJ. Function of upper esophageal sphincter during swallowing: the grabbing effect. Am J Physiol Gastrointest Liver Physiol. 1997;272:G1057–63. https://doi.org/10.1152/ajpgi.1997.272.5.G1057.

    Article  CAS  Google Scholar 

  48. Edeani FO, Kern M, Ulualp K, et al. Variables influencing manometric parameters of deglutitive and non-deglutitive upper esophageal sphincter: a study of 89 asymptomatic participants. Neurogastroenterol Motil. 2021. https://doi.org/10.1111/nmo.14175.

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

Part of this study was completed as a master’s dissertation to fulfill the requirements for the degree of Master of Deglutology at the Faculty of Medicine, KULeuven. This dissertation was written by the first author (HB), who received a scholarship grant from the Department of Science and Technology—Science Education Institute (DOST-SEI) of the Republic of the Philippines to study in Leuven, Belgium.

Funding

No funds, grants, or other support was received for conducting this study.

Author information

Authors and Affiliations

Authors

Contributions

HHGB—conceptualization, data curation, formal analysis, investigation, methodology, project administration, validation, visualization, writing—original draft, writing—review & editing. NP—conceptualization, formal analysis, investigation, writing—original draft. AG—investigation, resources. JT—resources—review & editing. TO—conceptualization, software, supervision, writing—review & editing. NR—conceptualization, data curation, formal analysis, investigation, methodology, project administration, resources, software, supervision, validation, visualization, writing—original draft, writing—review & editing.

Corresponding author

Correspondence to Nathalie Rommel.

Ethics declarations

Conflict of interest

Nathalie Rommel and Taher Omari hold a patent on the AIM software used for pressure-flow analysis. The other authors have no conflicts of interest to declare in relation to this study.

Ethical Approval

The study protocol was approved by the Research Ethics Committee of University Hospitals Leuven, Belgium.

Informed Consent

All subjects provided written and verbal consent to allow their anonymized clinical data to be used for research purposes.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 12445 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bayona, H.H.G., Pizzorni, N., Tack, J. et al. Accuracy of High-Resolution Pharyngeal Manometry Metrics for Predicting Aspiration and Residue in Oropharyngeal Dysphagia Patients with Poor Pharyngeal Contractility. Dysphagia 37, 1560–1575 (2022). https://doi.org/10.1007/s00455-022-10417-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00455-022-10417-5

Keywords

Navigation