Skip to main content
Log in

Concordant Validity of a Digital Peak Cough Flow Meter to Assess Voluntary Cough Strength in Individuals with ALS

  • Original Article
  • Published:
Dysphagia Aims and scope Submit manuscript

Abstract

Peak cough flow represents an important metric directly related to the physiologic ability of an individual to defend the airway or expel tracheal aspirate. Given the high prevalence of dysphagia and dystussia in individuals with amyotrophic lateral sclerosis (ALS) and recent findings that the expiratory phase of voluntary cough is significantly impaired in ALS individuals, we aimed to determine the reproducibility of an affordable, portable peak cough flow (PCF) meter for the assessment of cough production in individuals with ALS. 109 individuals with ALS completed voluntary cough testing using both the research cough spirometry equipment and a digital peak cough flow meter. Maximum peak expiratory cough flow rates were obtained from each device. Analyses included paired t test, Pearson’s correlation, and Lin’s concordance correlation to determine the degree of agreement and reproducibility between cough measurement devices (alpha = 0.05). Mean differences between peak cough flow test values (L/min) across instruments were not statistically significant (mean difference =  − 2.93; 95% CI − 18.67, 12.82; p = 0.713). PCF values obtained from the digital peak cough flow meter and the research cough spirometry equipment were strongly associated (r = 0.826, p < 0.000) and demonstrated a high level of agreement and reproducibility (ρc = 0.824, 95% CI 0.754, 0.876). These data validate the use of an inexpensive and portable digital peak cough flow device to index peak cough flow strength in individuals with ALS. This assessment could easily be incorporated into a multidisciplinary ALS clinical setting to index the physiologic ability of an individual to protect the airway.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Kiernan MC, Vucic S, Cheah BC, Turner MR, Eisen A, Hardiman O, Burrell JR, Zoing MC. Amyotrophic lateral sclerosis. Lancet. 2011;377(9769):942–55. https://doi.org/10.1016/s0140-6736(10)61156-7.

    Article  CAS  PubMed  Google Scholar 

  2. Mehta P, Antao V, Kaye W, Sanchez M, Williamson D, Bryan L, Muravov O, Horton K. Prevalence of amyotrophic lateral sclerosis—United States, 2010–2011. MMWR Surveill Summ. 2014;63(7):1–13.

    Google Scholar 

  3. Britton D, Karam C, Schindler JS. Swallowing and secretion management in neuromuscular disease. Clin Chest Med. 2018;39(2):449–57. https://doi.org/10.1016/j.ccm.2018.01.007.

    Article  PubMed  Google Scholar 

  4. Tabor L, Gaziano J, Watts S, Robison R, Plowman EK. Defining swallowing-related quality of life profiles in individuals with Amyotrophic lateral sclerosis. Dysphagia. 2016. https://doi.org/10.1007/s00455-015-9686-2.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Greenwood DI. Nutrition management of amyotrophic lateral sclerosis. Nutr Clin Pract. 2013;28(3):392–9. https://doi.org/10.1177/0884533613476554.

    Article  PubMed  Google Scholar 

  6. Ruoppolo G, Schettino I, Frasca V, Giacomelli E, Prosperini L, Cambieri C, Roma R, Greco A, Mancini P, De Vincentiis M, Silani V, Inghilleri M. Dysphagia in amyotrophic lateral sclerosis: prevalence and clinical findings. Acta Neurol Scand. 2013;128(6):397–401. https://doi.org/10.1111/ane.12136.

    Article  CAS  PubMed  Google Scholar 

  7. Miller RG, Jackson CE, Kasarskis EJ, England JD, Forshew D, Johnston W, Kalra S, Katz JS, Mitsumoto H, Rosenfeld J, Shoesmith C, Strong MJ, Woolley SC. Practice parameter update: the care of the patient with amyotrophic lateral sclerosis: drug, nutritional, and respiratory therapies (an evidence-based review): report of the Quality Standards Subcommittee of the American Academy of Neurology. Neurology. 2009;73(15):1218–26. https://doi.org/10.1212/WNL.0b013e3181bc0141.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Marin B, Beghi E, Vial C, Bernard E, Lautrette G, Clavelou P, Guy N, Lemasson G, Debruxelles S, Cintas P, Antoine JC, Camdessanche JP, Logroscino G, Preux PM, Couratier P. Evaluation of the application of the European guidelines for the diagnosis and clinical care of amyotrophic lateral sclerosis (ALS) patients in six French ALS centres. Eur J Neurol. 2016;23(4):787–95. https://doi.org/10.1111/ene.12941.

    Article  CAS  PubMed  Google Scholar 

  9. Plowman EK, Watts SA, Robison R, Tabor L, Dion C, Gaziano J, Vu T, Gooch C. Voluntary cough airflow differentiates safe versus Unsafe swallowing in amyotrophic lateral sclerosis. Dysphagia. 2016. https://doi.org/10.1007/s00455-015-9687-1.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Pattee GL, Plowman EK, Brooks BR, Berry JD, Atassi N, Chapin JL, Garand K, Yunusova Y, McIlduff CE, Young E, Costello JM, Macklin EA, Locatelli ER, Silani V, Heitzman D, Wymer J, Goutman SA, Gelinas DF, Smith R, Perry B, Nalipinski P, Stipancic K, O'Brien M, Sullivan SL, Green J. Best practices protocol for the evaluation of bulbar dysfunction: summary recommendations from the NEALS bulbar subcommittee symposium. Amyotroph Lateral Scler Frontotemporal Degener. 2018;19(3–4):311–2. https://doi.org/10.1080/21678421.2017.1404109.

    Article  PubMed  Google Scholar 

  11. Miller RG, Jackson CE, Kasarskis EJ, England JD, Forshew D, Johnston W, Kalra S, Katz JS, Mitsumoto H, Rosenfeld J, Shoesmith C, Strong MJ, Woolley SC. Practice parameter update: the care of the patient with amyotrophic lateral sclerosis: multidisciplinary care, symptom management, and cognitive/behavioral impairment (an evidence-based review): report of the Quality Standards Subcommittee of the American Academy of Neurology. Neurology. 2009;73(15):1227–333. https://doi.org/10.1212/WNL.0b013e3181bc01a4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Association ASLaH, Clinical indicators for instrumental assessment of dysphagia (guidelines). ASHA Suppl. 2000;20:18–9.

    Google Scholar 

  13. Pitts T, Troche M, Mann G, Rosenbek J, Okun MS, Sapienza C. Using voluntary cough to detect penetration and aspiration during oropharyngeal swallowing in patients with Parkinson disease. Chest. 2010;138(6):1426–31. https://doi.org/10.1378/chest.10-0342.

    Article  PubMed  Google Scholar 

  14. Pitts T, Bolser D, Rosenbek J, Troche M, Sapienza C. Voluntary cough production and swallow dysfunction in Parkinson's disease. Dysphagia. 2008;23(3):297–301. https://doi.org/10.1007/s00455-007-9144-x.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Smith Hammond CA, Goldstein LB, Zajac DJ, Gray L, Davenport PW, Bolser DC. Assessment of aspiration risk in stroke patients with quantification of voluntary cough. Neurology. 2001;56(4):502–6.

    Article  CAS  Google Scholar 

  16. Hegland K, Okun M, Troche M. Sequential voluntary cough and aspiration or aspiration risk in Parkinson's disease. Lung. 2014;192(4):601.

    Article  Google Scholar 

  17. Miles A, Zeng ISL, McLauchlan H, Huckabee ML. Cough reflex testing in dysphagia following stroke: a randomized controlled trial. J Clin Med Res. 2013;5(3):222–33.

    PubMed  PubMed Central  Google Scholar 

  18. Boitano LJ (2006) Management of airway clearance in neuromuscular disease. Respir Care 51(8):913–922; discussion 922–914

    PubMed  Google Scholar 

  19. Benditt JO. Respiratory complications of amyotrophic lateral sclerosis. Semin Respir Crit Care Med. 2002;23(3):239–47. https://doi.org/10.1055/s-2002-33032.

    Article  PubMed  Google Scholar 

  20. Sancho J, Servera E, Diaz J, Marin J. Comparison of peak cough flows measured by pneumotachograph and a portable peak flow meter. Am J Phys Med Rehabil. 2004;83(8):608–12.

    Article  Google Scholar 

  21. Silverman EP, Carnaby-Mann G, Pitts T, Davenport P, Okun MS, Sapienza C. Concordance and discriminatory power of cough measurement devices for individuals with Parkinson disease. Chest. 2014;145(5):1089–96.

    Article  Google Scholar 

  22. Hutcheson KA, Barrow MP, Warneke CL, Wang Y, Eapen G, Lai SY, Barringer DA, Plowman EK, Lewin JS. Cough strength and expiratory force in aspirating and nonaspirating postradiation head and neck cancer survivors. Laryngoscope. 2017. https://doi.org/10.1002/lary.26986.

    Article  PubMed  PubMed Central  Google Scholar 

  23. Cedarbaum JM, Stambler N, Malta E, Fuller C, Hilt D, Thurmond B, Nakanishi A. The ALSFRS-R: a revised ALS functional rating scale that incorporates assessments of respiratory function. J Neurol Sci. 1999;169:13–211. https://doi.org/10.1016/S0022-510X(99)00210-5.

    Article  CAS  PubMed  Google Scholar 

  24. Lawrence IKL. A concordance correlation coefficient to evaluate reproducibility. Biometrics. 1989;45(1):255–68. https://doi.org/10.2307/2532051.

    Article  Google Scholar 

  25. Laciuga H, Brandimore AE, Troche MS, Hegland KW. Analysis of clinicians' perceptual cough evaluation. Dysphagia. 2016;31(4):521–30. https://doi.org/10.1007/s00455-016-9708-8.

    Article  PubMed  Google Scholar 

  26. Hassan HE, Aboloyoun AI. The value of bedside tests in dysphagia evaluation. Egyptian Journal of Ear, Nose, Throat and Allied Sciences. 2014;15(3):197–203. https://doi.org/10.1016/j.ejenta.2014.07.007.

    Article  Google Scholar 

  27. Smith JA, Ashurst HL, Jack S, Woodcock AA, Earis JE. The description of cough sounds by healthcare professionals. Cough. 2006;2(1):1. https://doi.org/10.1186/1745-9974-2-1.

    Article  PubMed  PubMed Central  Google Scholar 

  28. Plowman E, Tabor Gray L, Magennis K, Chapin J, Robison R, Anderson A, Vasilopoulos T, Wymer J. Validation of the physiologic risk index for swallowing impairment (PRISIM) in ALS. Paper presented at the Dysphagia Research Society, San Diego, CA; 2019.

  29. Matsuda C, Shimizu R, Nakayama Y, Haraguchi M. Cough peak flow decline rate predicts survival in patients with amyotrophic lateral sclerosis. Muscle Nerve. 2018;59(2):168–73. https://doi.org/10.1002/mus.26320.

    Article  PubMed  Google Scholar 

  30. Tilanus TBM, Groothuis JT, TenBroek-Pastoor JMC, Feuth TB, Heijdra YF, Slenders JPL, Doorduin J, Van Engelen BG, Kampelmacher MJ, Raaphorst J. The predictive value of respiratory function tests for non-invasive ventilation in amyotrophic lateral sclerosis. Respir Res. 2017;18(1):144. https://doi.org/10.1186/s12931-017-0624-8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Green JR, Yunusova Y, Kuruvilla MS, Wang J, Pattee GL, Synhorst L, Zinman L, Berry JD. Bulbar and speech motor assessment in ALS: challenges and future directions. Amyotroph Lateral Scler Frontotemporal Degener. 2013;14(7–8):494–500. https://doi.org/10.3109/21678421.2013.817585.

    Article  PubMed  PubMed Central  Google Scholar 

  32. McHorney CA, Rosenbek JC. Functional outcome assessment of adults with oropharyngeal dysphagia. Semin Speech Lang. 1998;19(3):235–246; quiz 247. https://doi.org/10.1055/s-2008-1064047

  33. Watts SA, Tabor L, Plowman EK. To cough or not to cough? Examining the potential utility of cough testing in the clinical evaluation of swallowing. Curr Phys Med Rehabil Rep. 2016;4(4):262–76. https://doi.org/10.1007/s40141-016-0134-5.

    Article  PubMed  PubMed Central  Google Scholar 

  34. Plowman EK, Tabor LC, Wymer J, Pattee G. The evaluation of bulbar dysfunction in amyotrophic lateral sclerosis: survey of clinical practice patterns in the United States. Amyotroph Lateral Scler Frontotemporal Degener. 2017;18:351–7. https://doi.org/10.1080/21678421.2017.1313868.

    Article  PubMed  PubMed Central  Google Scholar 

  35. Soriani MH, Desnuelle C. Care management in amyotrophic lateral sclerosis. Revue Neurol. 2017;173(5):288–99. https://doi.org/10.1016/j.neurol.2017.03.031.

    Article  Google Scholar 

  36. Brandimore AE, Troche MS, Huber JE, Hegland KW. Respiratory kinematic and airflow differences between reflex and voluntary cough in healthy young adults. Front Physiol. 2015;6:284.

    Article  Google Scholar 

Download references

Funding

This study was funded by the National Institute of Neurological Disorders and Stroke (1R01 NS100859), the Amyotrophic Lateral Sclerosis Association Clinical Management Grant, the University of Florida Breathing Research and Therapeutics Training Program (T32HL134621), and the Center for Respiratory Research and Rehabilitation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. Tabor-Gray.

Ethics declarations

Conflict of interest

The authors declare they have no conflict of interest.

Ethical Approval

All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards.

Informed Consent

Informed consent was obtained from all individual participants included in the study.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tabor-Gray, L., Vasilopoulos, T. & Plowman, E.K. Concordant Validity of a Digital Peak Cough Flow Meter to Assess Voluntary Cough Strength in Individuals with ALS. Dysphagia 35, 568–573 (2020). https://doi.org/10.1007/s00455-019-10060-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00455-019-10060-7

Keywords

Navigation