Skip to main content
Log in

Predictors of Peak Expiratory Cough Flow in Individuals with Amyotrophic Lateral Sclerosis

  • Original Article
  • Published:
Dysphagia Aims and scope Submit manuscript

Abstract

Dystussia is prevalent in individuals with amyotrophic lateral sclerosis (ALS), leading to a diminished physiologic capacity to effectively defend the airway. We aimed to identify predictors of peak expiratory cough flow rate in individuals with ALS. One hundred and thirty-four individuals with a confirmed diagnosis of ALS (El-Escorial criteria revised) completed the ALS Functional Rating Scale-Revised (ALSFRS-R) and underwent pulmonary function and cough spirometry testing. Pearson’s correlation coefficients and hierarchical multiple regression modeling were conducted to determine predictors of voluntary cough peak expiratory flow rate (p < 0.05). The full model including age, bulbar disease, cough spirometry metrics, and respiratory parameters had a marginal R2 = 0.635, F (7, 126) = 30.241, p < 0.0005, adjusted R2 = 0.61. Maximum expiratory pressure, compression phase, and vital capacity did not contribute and were therefore removed (p < 0.05). The most parsimonious predictive model included age, bulbar disease, peak inspiratory flow rate and duration, peak expiratory rise time, and inspiratory pressure generation with a marginal R2 = 0.543. Although expiratory pressure generation has historically served as the therapeutic target to improve dystussia in ALS, the current dataset highlighted that the inability to quickly and forcefully inspire during the inspiratory phase of voluntary cough places patients at a mechanical disadvantage to generate subsequent high-velocity expiratory airflow to clear the airway. Thus, therapeutic training programs that include both inspiratory and expiratory strength targets may optimize airway clearance capacity in this challenging patient population.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Nichols NL, Van Dyke J, Nashold L, Satriotomo I, Suzuki M, Mitchell GS. Ventilatory control in ALS. Respir Physiol Neurobiol. 2013;189(2):429–37. https://doi.org/10.1016/j.resp.2013.05.016.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Benditt JO. Respiratory complications of amyotrophic lateral sclerosis. Semin Respir Crit Care Med. Jun 2002;23(3):239–47. https://doi.org/10.1055/s-2002-33032.

    Article  PubMed  Google Scholar 

  3. Onesti E, Schettino I, Gori MC, et al. Dysphagia in amyotrophic lateral sclerosis: impact on patient behavior, diet adaptation, and riluzole management. Front Neurol. 2017;8:94. https://doi.org/10.3389/fneur.2017.00094.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Tilanus TBM, Groothuis JT, TenBroek-Pastoor JMC, et al. The predictive value of respiratory function tests for non-invasive ventilation in amyotrophic lateral sclerosis. Respir Res. 2017;18(1):144. https://doi.org/10.1186/s12931-017-0624-8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Tattersall R, Murray D, Heverin M, et al. Respiratory measurements and airway clearance device prescription over one year in amyotrophic lateral sclerosis. Amyotroph Lateral Scler Frontotemporal Degener. 2019. https://doi.org/10.1080/21678421.2019.1697887.

    Article  PubMed  Google Scholar 

  6. Chatwin M, Toussaint M, Goncalves MR, et al. Airway clearance techniques in neuromuscular disorders: a state of the art review. Respir Med. Mar 2018;136:98–110. https://doi.org/10.1016/j.rmed.2018.01.012.

    Article  PubMed  Google Scholar 

  7. Polkey MI, Lyall RA, Yang K, Johnson E, Leigh PN, Moxham J. Respiratory muscle strength as a predictive biomarker for survival in amyotrophic lateral sclerosis. Am J Respir Crit Care Med. 2017;195(1):86–95. https://doi.org/10.1164/rccm.201604-0848OC.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Sancho J, Servera E, Diaz J, Marin J. Predictors of ineffective cough during a chest infection in patients with stable amyotrophic lateral sclerosis. Am J Respir Crit Care Med. 2007;175(12):1266–71. https://doi.org/10.1164/rccm.200612-1841OC.

    Article  PubMed  Google Scholar 

  9. Plowman EK, Watts SA, Robison R, et al. Voluntary cough airflow differentiates safe versus unsafe swallowing in amyotrophic lateral sclerosis. Dysphagia. 2016. https://doi.org/10.1007/s00455-015-9687-1.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Plowman EK, Tabor-Gray L, Rosado KM, et al. Impact of expiratory strength training in amyotrophic lateral sclerosis: results of a randomized, sham-controlled trial. Muscle Nerve. Jan 2019;59(1):40–6. https://doi.org/10.1002/mus.26292.

    Article  PubMed  Google Scholar 

  11. Chatwin M, Ross E, Hart N, Nickol AH, Polkey MI, Simonds AK. Cough augmentation with mechanical insufflation/exsufflation in patients with neuromuscular weakness. Eur Respir J. Mar 2003;21(3):502–8. https://doi.org/10.1183/09031936.03.00048102.

    Article  CAS  PubMed  Google Scholar 

  12. Lacombe M, Del Amo CL, Boré A, et al. Comparison of three cough-augmentation techniques in neuromuscular patients: mechanical insufflation combined with manually assisted cough, insufflation-exsufflation alone and insufflation-exsufflation combined with manually assisted cough. Respiration. 2014;88(3):215–22. https://doi.org/10.1159/000364911.

    Article  PubMed  Google Scholar 

  13. Brooks BR, Miller RG, Swash M, Munsat TL. El Escorial revisited: revised criteria for the diagnosis of amyotrophic lateral sclerosis. Amyotroph Lateral Scler Other Motor Neuron Disord. 2000;1(5):293–9.

    Article  CAS  PubMed  Google Scholar 

  14. Tabor-Gray LC, Gallestagui A, Vasilopoulos T, Plowman EK. Characteristics of impaired voluntary cough function in individuals with amyotrophic lateral sclerosis. Amyotroph Lateral Scler Frontotemporal Degener. Feb 2019;20(1–2):37–42. https://doi.org/10.1080/21678421.2018.1510011.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Laveneziana P, Albuquerque A, Aliverti A, et al. ERS statement on respiratory muscle testing at rest and during exercise. Eur Respir J. 2019;53(6):1801214. https://doi.org/10.1183/13993003.01214-2018.

    Article  PubMed  Google Scholar 

  16. Cedarbaum JM, Stambler N, Malta E, et al. The ALSFRS-R: a revised ALS functional rating scale that incorporates assessments of respiratory function. J Neurol Sci. 1999;169:13–21. https://doi.org/10.1016/S0022-510X(99)00210-5.

    Article  CAS  PubMed  Google Scholar 

  17. James G, Witten D, Hastie T, Tibshirani R. An introduction to statistical learning: with applications in R. 7th ed. New York: Springer; 2017.

    Google Scholar 

  18. Nakagawa S, Schielzeth H. A general and simple method for obtaining R2 from generalized linear mixed-effects models. Methods Ecol Evol. 2012;4(2):133–42. https://doi.org/10.1111/j.2041-210x.2012.00261.x.

    Article  Google Scholar 

  19. Brandimore AE, Troche MS, Huber JE, Hegland KW. Respiratory kinematic and airflow differences between reflex and voluntary cough in healthy young adults. Front Physiol. 2015. https://doi.org/10.3389/fphys.2015.00284.

    Article  PubMed  PubMed Central  Google Scholar 

  20. Pitts T, Bordelon R, Huff A, Byrne BJ, Smith BK. Cough effectiveness and pulmonary hygiene practices in patients with pompe disease. Lung. 2019;197(1):1–8. https://doi.org/10.1007/s00408-018-0171-1.

    Article  CAS  PubMed  Google Scholar 

  21. Stephens RE, Addington WR, Miller SP, Anderson JW. Videofluoroscopy of the diaphragm during voluntary and reflex cough in humans. Am J Phys Med Rehabil. 2003. https://doi.org/10.1097/01.PHM.0000064731.36291.61.

    Article  PubMed  Google Scholar 

  22. Smith JA, Aliverti A, Quaranta M, et al. Chest wall dynamics during voluntary and induced cough in healthy volunteers. J Physiol. 2012;590(3):563–74. https://doi.org/10.1113/jphysiol.2011.213157.

    Article  CAS  PubMed  Google Scholar 

  23. Addington WR, Stephens RE, Phelipa MM, Widdicombe JG, Ockey RR. Intra-abdominal pressures during voluntary and reflex cough. Cough. 2008;4:2–2. https://doi.org/10.1186/1745-9974-4-2.

    Article  PubMed  PubMed Central  Google Scholar 

  24. LoMauro A, Aliverti A. Respiratory muscle activation and action during voluntary cough in healthy humans. J electromyogr kinesiol. 2019;49:102359. https://doi.org/10.1016/j.jelekin.2019.102359.

    Article  PubMed  Google Scholar 

  25. Plowman EK, Tabor-Gray L, Rosado KM, et al. Impact of expiratory strength training in amyotrophic lateral sclerosis: results of a randomized sham controlled trial. Muscle Nerve. 2018. https://doi.org/10.1002/mus.26292.

    Article  PubMed  Google Scholar 

  26. Robison R, Tabor-Gray LC, Wymer JP, Plowman EK. Combined respiratory training in an individual with C9orf72 amyotrophic lateral sclerosis. Ann clin transl neurol. 2018;5(9):1134–8. https://doi.org/10.1002/acn3.623.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Britton D, Benditt JO, Merati AL, et al. Associations between laryngeal and cough dysfunction in motor neuron disease with bulbar involvement. Dysphagia. 2014;29(6):637–46. https://doi.org/10.1007/s00455-014-9554-5.

    Article  PubMed  Google Scholar 

  28. Matsuda C, Shimizu T, Nakayama Y, Haraguchi M. Cough peak flow decline rate predicts survival in patients with amyotrophic lateral sclerosis. Muscle Nerve. 2019;59:168–73. https://doi.org/10.1002/mus.26320.

    Article  PubMed  Google Scholar 

  29. Lechtzin N, Cudkowicz ME, de Carvalho M, et al. Respiratory measures in amyotrophic lateral sclerosis. Amyotroph Lateral Scler Frontotemporal Degener. 2018;19(5–6):321–30. https://doi.org/10.1080/21678421.2018.1452945.

    Article  PubMed  Google Scholar 

  30. Elliott JE, Greising SM, Mantilla CB, Sieck GC. Functional impact of sarcopenia in respiratory muscles. Respir Physiol Neurobiol. 2016;226:137–46. https://doi.org/10.1016/j.resp.2015.10.001.

    Article  CAS  PubMed  Google Scholar 

  31. Evans WJ, Campbell WW. Sarcopenia and age-related changes in body composition and functional capacity. J Nutr. 1993;123(2 Suppl):465–8. https://doi.org/10.1093/jn/123.suppl_2.465.

    Article  CAS  PubMed  Google Scholar 

  32. Sarmento A, Resqueti V, Dourado-Júnior M, et al. Effects of air stacking maneuver on cough peak flow and chest wall compartmental volumes of subjects with amyotrophic lateral sclerosis. Arch Phys Med Rehabil. 2017;98(11):2237-2246.e1. https://doi.org/10.1016/j.apmr.2017.04.015.

    Article  PubMed  Google Scholar 

  33. Trebbia G, Lacombe M, Fermanian C, et al. Cough determinants in patients with neuromuscular disease. Respir Physiol Neurobiol. 2005;146(2–3):291–300. https://doi.org/10.1016/j.resp.2005.01.001.

    Article  PubMed  Google Scholar 

  34. Pinto S, Swash M, de Carvalho M. Respiratory exercise in amyotrophic lateral sclerosis. Amyotroph Lateral Scler. 2012;13(1):33–43. https://doi.org/10.3109/17482968.2011.626052.

    Article  PubMed  Google Scholar 

  35. Bédard M-E, McKim DA. Daytime mouthpiece for continuous noninvasive ventilation in individuals with amyotrophic lateral sclerosis. Respir Care. 2016;61(10):1341–8. https://doi.org/10.4187/respcare.04309.

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

The authors would like to acknowledge Amber Anderson, Lauren DiBiase, and Jennifer Chapin for assisting with data collection. We would also like to thank the patients and caregivers who make this research possible.

Funding

This study was funded by the National Institute of Neurological Disorders and Stroke (1R01 NS100859), the University of Florida Breathing Research and Therapeutics Training Program (National Institute of Heart Lung and Blood T32HL134621), and the Dr. Jon and Nancy Wilkins Fellowship for ALS Research Fund.

Author information

Authors and Affiliations

Authors

Contributions

LTG, KM, JW, and EPK were involved in the clinical treatment and data collection of these patients. LTG, KM, TV, and EKP were involved in data management and statistical analysis. LTG, KM, BKS, JW, and EKP drafted the manuscript. LTG, KM, and EKP were involved in study conceptualization and oversight. All authors reviewed the manuscript.

Corresponding author

Correspondence to Lauren Tabor Gray.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tabor Gray, L., McElheny, K.L., Vasilopoulos, T. et al. Predictors of Peak Expiratory Cough Flow in Individuals with Amyotrophic Lateral Sclerosis. Dysphagia 38, 719–725 (2023). https://doi.org/10.1007/s00455-022-10503-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00455-022-10503-8

Keywords

Navigation