Skip to main content
Log in

Computing Instance-Optimal Kernels in Two Dimensions

  • Published:
Discrete & Computational Geometry Aims and scope Submit manuscript

Abstract

Let \(P\) be a set of n points in \(\mathbb {R}^2\). For a parameter \(\varepsilon \in (0,1)\), a subset \(C\subseteq P\) is an \(\varepsilon \)-kernel of \(P\) if the projection of the convex hull of \(C\) approximates that of \(P\) within \((1-\varepsilon )\)-factor in every direction. The set \(C\) is a weak \(\varepsilon \)-kernel of \(P\) if its directional width approximates that of \(P\) in every direction. Let \(\textsf{k}_{\varepsilon }(P)\) (resp. \(\textsf{k}^{\textsf{w}}_{\varepsilon }(P)\)) denote the minimum-size of an \(\varepsilon \)-kernel (resp. weak \(\varepsilon \)-kernel) of \(P\). We present an \(O(n\textsf{k}_{\varepsilon }(P)\log n)\)-time algorithm for computing an \(\varepsilon \)-kernel of \(P\) of size \(\textsf{k}_{\varepsilon }(P)\), and an \(O(n^2\log n)\)-time algorithm for computing a weak \(\varepsilon \)-kernel of \(P\) of size \(\textsf{k}^{\textsf{w}}_{\varepsilon }(P)\). We also present a fast algorithm for the Hausdorff variant of this problem. In addition, we introduce the notion of \(\varepsilon \)-core, a convex polygon lying inside , prove that it is a good approximation of the optimal \(\varepsilon \)-kernel, present an efficient algorithm for computing it, and use it to compute an \(\varepsilon \)-kernel of small size.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

Notes

  1. Recall that for two sets \(A, B \in \mathbb {R}^2\), \(H(A,B) = \max \{h(A,B), h(B,A)\}\), where \(h(X,Y) = \max _{x\in X}\min _{y\in Y} \Vert x-y\Vert \).

  2. By computing the union of arcs in \(\Xi \), we can decide, in \(O(n\log n)\) time, whether \(\Xi \) covers .

References

  1. Agarwal, P.K., Har-Peled, S.: Computing instance-optimal kernels in two dimensions. Proc. 29th Int. Symp. Comput. Geom. 2023, pp. 4:1–4:15 (2023)

  2. Agarwal, P.K., Har-Peled, S., Varadarajan, K.R.: Approximating extent measures of points. J. Assoc. Comput. Mach 51(4), 606–635 (2004). https://doi.org/10.1145/1008731.1008736http://www.acm.org/jacm/

  3. Agarwal, P.K., Har-Peled, S., Varadarajan, K.R.: Geometric approximation via coresets. In: Goodman, J.E., Pollack, R., Welzl, E. (eds.) Combinatorial and Computational Geometry, pp. 1–30. Cambridge University Press, Cambridge, UK (2005)

  4. Agarwal, P.K., Kumar, N., Sintos, S., Suri, S.: Efficient algorithms for \(k\)-regret minimizing sets. In: Iliopoulos, C.S., Pissis, S.P., Puglisi, S.J., Raman, R. (eds.) 16th Int. Symp. Exper. Alg., (SEA), pp. 7–1723 (2017). https://doi.org/10.4230/LIPIcs.SEA.2017.7. https://drops.dagstuhl.de/opus/volltexte/2017/7632/

  5. Agarwal, P.K., Yu, H.: A space-optimal data-stream algorithm for coresets in the plane. In: Erickson, J. (ed.) Proc. 23rd Annu. Sympos. Comput. Geom. pp. 1–10. ACM, New York, NY, USA (2007). https://doi.org/10.1145/1247069.1247071

  6. Agarwal, P.K., Har-Peled, S., Yu, H.: Robust shape fitting via peeling and grating coresets. Discret. Comput. Geom. 39(1–3), 38–58 (2008). https://doi.org/10.1007/s00454-007-9013-2

    Article  MathSciNet  Google Scholar 

  7. Blum, A., Har-Peled, S., Raichel, B.: Sparse approximation via generating point sets. ACM Trans. Algo. 15(3), 32–13216 (2019). https://doi.org/10.1145/3302249

    Article  MathSciNet  Google Scholar 

  8. Brönnimann, H., Goodrich, M.T.: Almost optimal set covers in finite vc-dimension. Discrete Comput. Geom. 14(4), 463–479 (1995). https://doi.org/10.1007/BF02570718

  9. Cao, W., Li, J., Wang, H., Wang, K., Wang, R., Wong, R.C., Zhan, W.: k-regret minimizing set: Efficient algorithms and hardness. In: 20th Int. Conf. Data. Theory, pp. 11–11119 (2017). https://doi.org/10.4230/LIPIcs.ICDT.2017.11

  10. Chan, T.M., Har-Peled, S., Jones, M.: Optimal algorithms for geometric centers and depth. CoRR abs/1912.01639 (2021). arXiv:1912.01639 [cs.CG]

  11. Chan, T.M.: Faster core-set constructions and data-stream algorithms in fixed dimensions. Comput. Geom. Theory Appl. 35(1–2), 20–35 (2006). https://doi.org/10.1016/j.comgeo.2005.10.002

    Article  MathSciNet  Google Scholar 

  12. Chazelle, B., Guibas, L.J.: Fractional cascading: II. applications. Algorithmica 1(2), 163–191 (1986). https://doi.org/10.1007/BF01840441

    Article  MathSciNet  Google Scholar 

  13. Chazelle, B., Guibas, L.J.: Visibility and intersection problems in plane geometry. Discret. Comput. Geom. 4, 551–581 (1989). https://doi.org/10.1007/BF02187747

    Article  MathSciNet  Google Scholar 

  14. Clarkson, K.L.: Algorithms for polytope covering and approximation. In: Dehne, F.K.H.A., Sack, J., Santoro, N., Whitesides, S. (eds.) Proc. 3th Workshop Algorithms Data Struct. Lect. Notes in Comp. Sci., vol. 709, pp. 246–252. Springer, Berlin (1993). https://doi.org/10.1007/3-540-57155-8_252

  15. Cormen, T.H., Leiserson, C.E., Rivest, R.L., Stein, C.: Introduction to Algorithms, 3rd edn. MIT Press, Cambridge, MA (2009). http://mitpress.mit.edu/books/introduction-algorithms

  16. Das, G., Goodrich, M.T.: On the complexity of optimization problems for 3-dimensional convex polyhedra and decision trees. Comput. Geom. 8, 123–137 (1997). https://doi.org/10.1016/S0925-7721(97)00006-0

    Article  MathSciNet  Google Scholar 

  17. de Berg, M., Cheong, O., van Kreveld, M.J., Overmars, M.H.: Computational Geometry: Algorithms and Applications, 3rd Edition. Springer, Berlin, Germany (2008). https://www.worldcat.org/oclc/227584184

  18. Ghosh, S.K., Maheshwari,A.: An optimal algorithm for computing a minimum nested nonconvex polygon. Inform. Process. Lett. 36(6), 277–280 (1990). https://doi.org/10.1016/0020-0190(90)90038-Y

  19. Guibas, L.J., Hershberger, J., Mitchell, J.S.B., Snoeyink, J.: Approximating polygons and subdivisions with minimum-link paths. Int. J. Comput. Geom. Appl. 3(04), 383–415 (1993). https://doi.org/10.1142/S0218195993000257

    Article  MathSciNet  Google Scholar 

  20. Har-Peled, S.: Geometric Approximation Algorithms. Math. Surveys & Monographs, vol. 173. Amer. Math. Soc., Boston, MA, USA (2011). https://doi.org/10.1090/surv/173. http://sarielhp.org/book/

  21. Hershberger, J., Suri, S.: A pedestrian approach to ray shooting: Shoot a ray, take a walk. J. Algorithms 18(3), 403–431 (1995). https://doi.org/10.1006/jagm.1995.1017

    Article  MathSciNet  Google Scholar 

  22. Imai, H., Iri, M.: An optimal algorithm for approximating a piecewise linear function. J. Info. Process. 9(3), 159–162 (1986)

    MathSciNet  Google Scholar 

  23. Klimenko, G., Raichel, B.: Fast and exact convex hull simplification. In: Bojanczyk, M., Chekuri, C. (eds.) Proc. 41th Conf. Found. Soft. Tech. Theoret. Comput. LIPIcs, vol. 213, pp. 26–12617. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, Wadern, Germany (2021). https://doi.org/10.4230/LIPIcs.FSTTCS.2021.26

  24. Lee, C.C., Lee, D.T.: On a circle-cover minimization problem. Inf. Process. Lett. 18(2), 109–115 (1984). https://doi.org/10.1016/0020-0190(84)90033-4

    Article  MathSciNet  Google Scholar 

  25. Mitchell, J.S., Polishchuk, V.: Minimum-perimeter enclosures. Inform. Process. Lett. 107(3–4), 120–124 (2008). https://doi.org/10.1016/j.ipl.2008.02.007

    Article  MathSciNet  Google Scholar 

  26. Mitchell, J.S., Suri, S.: Separation and approximation of polyhedral objects. Comput. Geom. Theory Appl. 5(2), 95–114 (1995). https://doi.org/10.1016/0925-7721(95)00006-U

    Article  MathSciNet  Google Scholar 

  27. Preparata, F.P., Shamos, M.I.: Computational Geometry - An Introduction. Springer, New York, NY (1985)

  28. Schlag, M., Luccio, F., Maestrini, P., Lee, D.T., Wong, C.K.: A visibility problem in VLSI layout compaction. In: Preparata, F.P. (ed.) Advances in Computing Research, Volume 2: VLSI Theory, pp. 259–282. JAI Press Inc., Greenwich, CT (1984)

  29. Wang, C.A., Chan, E.P.F.: Finding the minimum visible vertex distance between two non-intersecting simple polygons. In: Aggarwal, A. (ed.) Proc. 2nd Annu. Sympos. Comput. Geom., pp. 34–42. ACM, New York, NY, USA (1986). https://doi.org/10.1145/10515.10519

  30. Wang, Y., Mathioudakis, M., Li, Y., Tan, K.: Minimum coresets for maxima representation of multidimensional data. In: Libkin, L., Pichler, R., Guagliardo, P. (eds.) Proc. 40th Symp. Principles Database Sys., pp. 138–152. ACM, New York, NY, USA (2021). https://doi.org/10.1145/3452021.3458322

  31. Wang, C.A.: Finding minimal nested polygons. BIT Numerical Mathematics 31(2), 230–236 (1991). https://doi.org/10.1007/bf01931283

    Article  MathSciNet  Google Scholar 

  32. Yu, H., Agarwal, P.K., Poreddy, R., Varadarajan, K.R.: Practical methods for shape fitting and kinetic data structures using coresets. Algorithmica 52(3), 378–402 (2008). https://doi.org/10.1007/s00453-007-9067-9

Download references

Acknowledgements

We thank the reviewers for their helpful comments. Work by the first author on this paper was partially supported by NSF grants IIS-18-14493 and CCF-20-07556. Work by the second author on this paper was partially supported by an NSF AF awards CCF-1907400 and CCF-2317241.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sariel Har-Peled.

Additional information

Editor in Charge: Kenneth Clarkson

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

A preliminary version of this paper appeared in SoCG 2023 [1].

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Agarwal, P.K., Har-Peled, S. Computing Instance-Optimal Kernels in Two Dimensions. Discrete Comput Geom (2024). https://doi.org/10.1007/s00454-024-00637-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00454-024-00637-x

Keywords

Mathematics Subject Classification

Navigation