Skip to main content
Log in

Spherical Cap Discrepancy of Perturbed Lattices Under the Lambert Projection

  • Published:
Discrete & Computational Geometry Aims and scope Submit manuscript

Abstract

For any given full rank lattice \(\Lambda \) and natural number K, we consider the point set \(P(K)=\Lambda /K\cap (0,1)^2\), with \(N=\#P(K)\approx K^2\), and bound the spherical cap discrepancy of the projection of these points under the Lambert map to the unit sphere. The bound is of order \(1/\sqrt{N}\), with leading coefficient given explicitly and depending on \(\Lambda \) only. The proof is established using a lemma that bounds the number of intersections of certain curves with fundamental domains that tile \(\mathbb {R}^2\), and even allows for local perturbations of \(\Lambda \) without affecting the bound, proving to be suitable for numerical applications. A special case yields the smallest constant for the leading term of the cap discrepancy for deterministic algorithms up to date.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data Availability

Data sharing not applicable to this article as no datasets were generated or analysed during the current study.

Code Availability

The code to produce the point distributions in Sect. 3 will be made available on the authors website: www.damirferizovic.wordpress.com.

Notes

  1. Here \(0\le \phi <2\pi \) and \(0<\theta <\pi \).

  2. See the Gauss circle problem, where Lemma 2.7 could be applied.

References

  1. Aistleitner, C., Brauchart, J.S., Dick, J.: Point sets on the sphere \({\mathbb{S}}^2\) with small spherical cap discrepancy. Discrete Comput. Geom. 48(4), 990–1024 (2012)

    MathSciNet  Google Scholar 

  2. Alishahi, K., Zamani, M.: The spherical ensemble and uniform distribution of points on the sphere. Electron. J. Probab. 20, # 23 (2015)

    Article  MathSciNet  Google Scholar 

  3. Armentano, D., Beltrán, C., Shub, M.: Minimizing the discrete logarithmic energy on the sphere: the role of random polynomials. Trans. Am. Math. Soc. 363(6), 2955–2965 (2011)

    Article  MathSciNet  Google Scholar 

  4. Bauer, R.: Distribution of points on a sphere with application to star catalogs. J. Guid. Cont. Dyn. 23(1), 130–137 (2000)

    Article  Google Scholar 

  5. Beck, J.: Some upper bounds in the theory of irregularities of distribution. Acta Arith. 43(2), 115–130 (1984)

    Article  MathSciNet  Google Scholar 

  6. Beck, J.: Sums of distances between points on a sphere—an application of the theory of irregularities of distribution to discrete geometry. Mathematika 31(1), 33–41 (1984)

    Article  MathSciNet  Google Scholar 

  7. Bellhouse, D.R.: Area estimation by point-counting techniques. Biometrics 37(2), 303–312 (1981)

    Article  MathSciNet  Google Scholar 

  8. Beltrán, C., Etayo, U.: The diamond ensemble: a constructive set of spherical points with small logarithmic energy. J. Complexity 59, # 101471 (2020)

    Article  MathSciNet  Google Scholar 

  9. Beltrán, C., Marzo, J., Ortega-Cerda, J.: Energy and discrepancy of rotationally invariant determinantal point processes in high dimensional spheres. J. Complexity 37, 76–109 (2016)

    Article  MathSciNet  Google Scholar 

  10. Bilyk, D., Ma, X., Pipher, J., Spencer, C.: Directional discrepancy in two dimensions. Bull. Lond. Math. Soc. 43(6), 1151–1166 (2011)

    Article  MathSciNet  Google Scholar 

  11. Bogomolny, E., Bohigas, O., Lebouf, P.: Distribution of roots of random polynomials. Phys. Rev. Lett. 68(18), 2726–2729 (1992)

    Article  MathSciNet  Google Scholar 

  12. Borodachov, S.V., Hardin, D.P., Saff, E.B.: Discrete Energy on Rectifiable Sets. Springer Monographs in Mathematics. Springer, New York (2019)

  13. Brauchart, J.S., Grabner, P.J.: Distributing many points on spheres: minimal energy and designs. J. Complexity 31(3), 293–326 (2015)

  14. Brauchart, J.S., Reznikov, A.B., Saff, E.B., Sloan, I.H., Wang, Y.G., Womersley, R.S.: Random point sets on the sphere—hole radii, covering, and separation. Exp. Math. 27(1), 62–81 (2018)

    Article  MathSciNet  Google Scholar 

  15. Choirat, Ch., Seri, R.: Numerical properties of generalized discrepancies on spheres of arbitrary dimension. J. Complexity 29(2), 216–235 (2013)

    Article  MathSciNet  Google Scholar 

  16. Cook, J.M.: Rational formulae for the production of a spherically symmetric probability distribution. Math. Tables Aids Comput. 11, 81–82 (1957)

    Article  MathSciNet  Google Scholar 

  17. Cui, J., Freeden, W.: Equidistribution on the sphere. SIAM J. Sci. Comput. 18(2), 595–609 (1997)

    Article  MathSciNet  Google Scholar 

  18. Etayo, U.: Spherical cap discrepancy of the diamond ensemble. Discrete Comput. Geom. 66(4), 1218–1238 (2021)

    Article  MathSciNet  Google Scholar 

  19. Górski, K.M., Hivon, E., Banday, A.J., Wandelt, B.D., Hansen, F.K., Reinecke, M., Bartelmann, M.: HEALPix: a framework for high-resolution discretization and fast analysis of data distributed on the sphere. Astrophys. J. 622(2), 759–771 (2005)

    Article  Google Scholar 

  20. Grabner, P.J., Klinger, B., Tichy, R.F.: Discrepancies of point sequences on the sphere and numerical integration. In: 2nd International Conference on Multivariate Approximation (Witten-Bommerholz 1996). Math. Res., vol. 101, pp. 95–112. Akademie Verlag, Berlin (1997)

  21. Hardin, D.P., Michaels, T., Saff, E.B.: A comparison of popular point configurations on \({\mathbb{S}}^2\). Dolomites Res. Notes Approx. 9, 16–49 (2016)

    MathSciNet  Google Scholar 

  22. Krishnapur, M.R.: Zeros of Random Analytic Functions. PhD thesis, University of California, Berkeley (2006). arXiv:math/0607504

  23. Lubotzky, A., Phillips, R., Sarnak, P.: Hecke operators and distributing points on the sphere. I. Commun. Pure Appl. Math. 39(suppl.), S149–S186 (1986)

  24. Rakhmanov, E.A., Saff, E.B., Zhou, Y.M.: Minimal discrete energy on the sphere. Math. Res. Lett. 1(6), 647–662 (1994)

    Article  MathSciNet  Google Scholar 

  25. Saff, E.B., Kuijlaars, A.B.J.: Distributing many points on a sphere. Math. Intell. 19(1), 5–11 (1997)

    Article  MathSciNet  Google Scholar 

  26. Swinbank, R., Purser, R.J.: Fibonacci grids: A novel approach to global modelling. Q. J. R. Meteorol. Soc. 132(619), 1769–1793 (2006)

    Article  Google Scholar 

  27. Whyte, L.L.: Unique arrangements of points on a sphere. Am. Math. Mon. 59, 606–611 (1952)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

The author thanks the anonymous referees for valuable suggestions and for providing the proof of Lemma 2.3. Further, thanks to Michelle Mastrianni for improving the text of the document, thanks to Dmitriy Bilyk and Arno Kuijlaars for skimming the paper and useful remarks; and thanks to the people involved with GNU Octave, Inkscape, LibreOffice, and TeXstudio, who made this document and many others possible.

Funding

The work was supported by the Methusalem grant METH/21/03—long term structural funding of the Flemish Government.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Damir Ferizović.

Ethics declarations

Competing Interests

The author has no relevant financial or non-financial interests to disclose.

Additional information

Editor in Charge: János Pach

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

The author thankfully acknowledges support by the Methusalem grant METH/21/03—long term structural funding of the Flemish Government

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ferizović, D. Spherical Cap Discrepancy of Perturbed Lattices Under the Lambert Projection. Discrete Comput Geom 71, 1352–1368 (2024). https://doi.org/10.1007/s00454-023-00547-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00454-023-00547-4

Keywords

Mathematics Subject Classification

Navigation