Skip to main content
Log in

On the Ehrhart Polynomial of Schubert Matroids

  • Published:
Discrete & Computational Geometry Aims and scope Submit manuscript

Abstract

In this paper, we give a formula for the number of lattice points in the dilations of Schubert matroid polytopes. As applications, we obtain the Ehrhart polynomials of uniform and minimal matroids as special cases, and give a recursive formula for the Ehrhart polynomials of (ab)-Catalan matroids. Ferroni showed that uniform and minimal matroids are Ehrhart positive. We show that all sparse paving Schubert matroids are Ehrhart positive and their Ehrhart polynomials are coefficient-wisely bounded by those of minimal and uniform matroids. This confirms a conjecture of Ferroni for the case of sparse paving Schubert matroids. Furthermore, we introduce notched rectangle matroids, which include minimal matroids, sparse paving Schubert matroids and panhandle matroids. We show that three subfamilies of notched rectangle matroids are Ehrhart positive, and conjecture that all notched rectangle matroids are Ehrhart positive.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Ardila, F.: The Catalan matroid. J. Comb. Theory Ser. A 104(1), 49–62 (2003)

    Article  MathSciNet  Google Scholar 

  2. Ardila, F., Fink, A., Rincón, F.: Valuations for matroid polytope subdivisions. Can. J. Math. 62(6), 1228–1245 (2010)

    Article  MathSciNet  Google Scholar 

  3. Billera, L.J., Jia, N., Reiner, V.: A quasisymmetric function for matroids. Eur. J. Comb. 30(8), 1727–1757 (2009)

    Article  MathSciNet  Google Scholar 

  4. Bonin, J.E.: Basis-exchange properties of sparse paving matroids. Adv. Appl. Math. 50(1), 6–15 (2013)

    Article  MathSciNet  Google Scholar 

  5. Bonin, J.E., de Mier, A.: Lattice path matroids: structural properties. Eur. J. Comb. 27(5), 701–738 (2006)

    Article  MathSciNet  Google Scholar 

  6. Bonin, J., de Mier, A., Noy, M.: Lattice path matroids: enumerative aspects and Tutte polynomials. J. Comb. Theory Ser. A 104(1), 63–94 (2003)

  7. Castillo, F., Liu, F.: Berline–Vergne valuation and generalized permutohedra. Discrete Comput. Geom. 60(4), 885–908 (2018)

    Article  MathSciNet  Google Scholar 

  8. Crapo, H.H.: Single-element extensions of matroids. J. Res. Nat. Bur. Stand. Sect. B 69B, 55–65 (1965)

  9. Crapo, H., Schmitt, W.: A free subalgebra of the algebra of matroids. Eur. J. Comb. 26(7), 1066–1085 (2005)

    Article  MathSciNet  Google Scholar 

  10. De Loera, J.A., Haws, D.C., Köppe, M.: Ehrhart polynomials of matroid polytopes and polymatroids. Discrete Comput. Geom. 42(4), 670–704 (2009)

    Article  MathSciNet  Google Scholar 

  11. Demazure, M.: Désingularisation des variétés de Schubert généralisées. Ann. Sci. École Norm. Sup. 7, 53–88 (1974)

    Article  MathSciNet  Google Scholar 

  12. Demazure, M.: Une nouvelle formule des caractères. Bull. Sci. Math. 98(3), 163–172 (1974)

    MathSciNet  Google Scholar 

  13. Derksen, H., Fink, A.: Valuative invariants for polymatroids. Adv. Math. 225(4), 1840–1892 (2010)

    Article  MathSciNet  Google Scholar 

  14. Dinolt, G.W.: An extremal problem for non-separable matroids. In: Théorie des Matroides (Brest 1970). Lecture Notes in Math., vol. 211, pp. 31–49. Springer, Berlin (1971)

  15. Fan, N.J.Y., Guo, P.L.: Vertices of Schubitopes. J. Comb. Theory Ser. A 177, # 105311 (2021)

    Article  MathSciNet  Google Scholar 

  16. Ferroni, L.: Hypersimplices are Ehrhart positive. J. Comb. Theory Ser. A 178, # 105365 (2021)

    Article  MathSciNet  Google Scholar 

  17. Ferroni, L.: On the Ehrhart polynomial of minimal matroids. Discrete Comput. Geom. 68(1), 255–273 (2022)

    Article  MathSciNet  Google Scholar 

  18. Ferroni, L.: Matroids are not Ehrhart positive. Adv. Math. 402, # 108337 (2022)

    Article  MathSciNet  Google Scholar 

  19. Ferroni, L., Jochemko, K., Schröter, B.: Ehrhart polynomials of rank two matroids. Adv. Appl. Math. 141, # 102410 (2022)

    Article  MathSciNet  Google Scholar 

  20. Ferroni, L., Schröter, B.: Valuative invariants for large classes of matroids (2022). arXiv:2208.04893

  21. Fink, A., Mészáros, K., St. Dizier, A.: Schubert polynomials as integer point transforms of generalized permutahedra. Adv. Math. 332, 465–475 (2018)

    Article  MathSciNet  Google Scholar 

  22. Hanely, D., Martin, J.L., McGinnis, D., Miyata, D., Nasr, G.D., Vindas-Meléndez, A.R., Yin, M.: Ehrhart theory of paving and panhandle matroids (2022). arXiv:2201.12442

  23. Katzman, M.: The Hilbert series of algebras of the Veronese type. Commun. Algebra 33(4), 1141–1146 (2005)

    Article  MathSciNet  Google Scholar 

  24. Knauer, K., Martínez-Sandoval, L., Ramírez Alfonsín, J.L.: On lattice path matroid polytopes: integer points and Ehrhart polynomial. Discrete Comput. Geom. 60(3), 698–719 (2018)

    Article  MathSciNet  Google Scholar 

  25. Kohnert, A.: Weintrauben, Polynome, Tableaux. PhD thesis, Universität Bayreuth (1990)

  26. Liu, F.: On positivity of Ehrhart polynomials. In: Recent Trends in Algebraic Combinatorics. Association for Women in Mathematics Series, vol. 16, pp. 189–237. Springer, Cham (2019)

    Chapter  Google Scholar 

  27. Monical, C., Tokcan, N., Yong, A.: Newton polytopes in algebraic combinatorics. Selecta Math. 25(5), # 66 (2019)

    Article  MathSciNet  Google Scholar 

  28. Murty, U.S.R.: On the number of bases of a matroid. In: 2nd Louisiana Conference on Combinatorics, Graph Theory and Computing (Baton Rouge 1971), pp. 387–410. Louisiana State University, Baton Rouge (1971)

  29. Oh, S.: Positroids and Schubert matroids. J. Comb. Theory Ser. A 118(8), 2426–2435 (2011)

    Article  MathSciNet  Google Scholar 

  30. Reiner, V., Shimozono, M.: Key polynomials and a flagged Littlewood–Richardson rule. J. Comb. Theory Ser. A 70(1), 107–143 (1995)

    Article  MathSciNet  Google Scholar 

  31. Stanley, R.P.: Enumerative Combinatorics, vol. 1. Cambridge Studies in Advanced Mathematics, vol. 49. Cambridge University Press, Cambridge (1997)

Download references

Acknowledgements

The authors wish to thank the referees for their valuable comments and suggestions. We are grateful to Shaoshi Chen, Peter Guo, Lisa Sun, Matthew Xie, Sherry Yan, and Arthur Yang for helpful conversations. Yao Li would like to thank the Research Experience for Undergraduates (REU) program “Sparklet” of the Math Department at Sichuan University. This work was supported by the National Natural Science Foundation of China (Grant Nos. 11971250 and 12071320) and Sichuan Science and Technology Program (Grant No. 2020YJ0006).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Neil J. Y. Fan.

Additional information

Editor in Charge: Csaba D. Tóth

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fan, N.J.Y., Li, Y. On the Ehrhart Polynomial of Schubert Matroids. Discrete Comput Geom 71, 587–626 (2024). https://doi.org/10.1007/s00454-023-00495-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00454-023-00495-z

Keywords

Mathematics Subject Classification

Navigation