Skip to main content
Log in

Three-Dimensional Graph Products with Unbounded Stack-Number

  • Published:
Discrete & Computational Geometry Aims and scope Submit manuscript

Abstract

We prove that the stack-number of the strong product of three n-vertex paths is \(\Theta (n^{1/3})\). The best previously known upper bound was O(n). No non-trivial lower bound was known. This is the first explicit example of a graph family with bounded maximum degree and unbounded stack-number. The main tool used in our proof of the lower bound is the topological overlap theorem of Gromov. We actually prove a stronger result in terms of so-called triangulations of Cartesian products. We conclude that triangulations of three-dimensional Cartesian products of any sufficiently large connected graphs have large stack-number. The upper bound is a special case of a more general construction based on families of permutations derived from Hadamard matrices. The strong product of three paths is also the first example of a bounded degree graph with bounded queue-number and unbounded stack-number. A natural question that follows from our result is to determine the smallest \(\Delta _0\) such that there exists a graph family with unbounded stack-number, bounded queue-number and maximum degree \(\Delta _0\). We show that \(\Delta _0\in \{6,7\}\).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Notes

  1. All graphs in this paper are simple and, unless explicitly stated otherwise, undirected and finite. Let V(G) and E(G) denote the vertex-set and edge-set of a graph G. Let \(\mathbb {N}=\{1,2,\dots \}\) and \(\mathbb {N}_0=\mathbb {N}\cup \{0\}\).

  2. A key step in the proof of (1.1) is the application of the Hex Lemma, which holds for any triangulation of \(P_n\square P_n\) (see [61] for example). Theorem 1.3 then follows by the method in [22].

  3. See [11, Sect. 12] for background on simplicial complexes.

  4. This definition is inspired by the definition of a bramble in a graph, which is used in graph minor theory. A bramble of a graph is only required to satisfy the first and second among the conditions we impose.

  5. A topological space X is path-connected if there is a path joining any two points of X; that is, for all \(x,y \in X\) there exists a continuous map \(f:[0,1] \rightarrow X\) such that \(f(0)=x\) and \(f(1)=y\).

  6. A topological space is simply connected if it is path-connected and any two paths with the same endpoints can be continuously transformed into each other.

  7. See [39, Thm. 1.20] for the general statement of van Kampen’s theorem, or [18, Sect. 2.1.3] for an example of the application of the theorem in the setting generalizing Lemma 3.4.

References

  1. Alam, J.M., Bekos, M.A., Dujmović, V., Gronemann, M., Kaufmann, M., Pupyrev, S.: On dispersable book embeddings. Theoret. Comput. Sci. 861, 1–22 (2021)

    Article  MathSciNet  Google Scholar 

  2. Alam, M.J., Brandenburg, F.J., Kobourov, S.G.: On the book thickness of 1-planar graphs (2015). arXiv:1510.05891

  3. Ambrus, G., Barát, J., Hajnal, P.: The slope parameter of graphs. Acta Sci. Math. (Szeged) 72(3–4), 875–889 (2006)

    MathSciNet  Google Scholar 

  4. Barát, J., Matoušek, J., Wood, D.R.: Bounded-degree graphs have arbitrarily large geometric thickness. Electron. J. Comb. 13, # R3 (2006)

  5. Baur, M., Brandes, U.: Crossing reduction in circular layouts. In: 30th International Workshop on Graph-Theoretic Concepts in Computer Science (Bad Honnef 2004). Lecture Notes in Computer Science, vol. 3353, pp. 332–343. Springer, Berlin (2004)

  6. Beame, P., Blais, E., Huynh-Ngoc, D.-T.: Longest common subsequences in sets of permutations (2009). arXiv:0904.1615

  7. Bekos, M.A., Bruckdorfer, T., Kaufmann, M., Raftopoulou, Ch.N.: The book thickness of 1-planar graphs is constant. Algorithmica 79(2), 444–465 (2017)

    Article  MathSciNet  Google Scholar 

  8. Bekos, M.A., Da Lozzo, G., Griesbach, S.M., Gronemann, M., Montecchiani, F., Raftopoulou, Ch.: Book embeddings of nonplanar graphs with small faces in few pages. In: 36th International Symposium on Computational Geometry. Leibniz International Proceedings in Informatics, vol. 164, # 16. Leibniz-Zent. Inform., Wadern (2020)

  9. Bekos, M.A., Kaufmann, M., Klute, F., Pupyrev, S., Raftopoulou, Ch., Ueckerdt, T.: Four pages are indeed necessary for planar graphs. J. Comput. Geom. 11(1), 332–353 (2020)

    MathSciNet  Google Scholar 

  10. Bernhart, F., Kainen, P.C.: The book thickness of a graph. J. Comb. Theory Ser. B 27(3), 320–331 (1979)

    Article  MathSciNet  Google Scholar 

  11. Björner, A.: Topological methods. In: Handbook of Combinatorics, vol. 2, pp. 1819–1872. Elsevier, Amsterdam (1995)

  12. Blankenship, R.L.: Book Embeddings of Graphs. PhD thesis, Louisiana State University and Agricultural & Mechanical College (2003)

  13. Blankenship, R., Oporowski, B.: Drawing subdivisions of complete and complete bipartite graphs on books. Tech. Rep. 1999-4. Department of Mathematics, Louisiana State University (1999)

  14. Bourgain, J.: Expanders and dimensional expansion. C. R. Math. Acad. Sci. Paris 347(7–8), 357–362 (2009)

    Article  MathSciNet  Google Scholar 

  15. Bourgain, J., Yehudayoff, A.: Expansion in \({\rm SL}_2(\mathbb{R} )\) and monotone expanders. Geom. Funct. Anal. 23(1), 1–41 (2013)

    Article  MathSciNet  Google Scholar 

  16. Brandenburg, F.J.: Book embeddings of \(k\)-map graphs (2020). arXiv:2012.06874

  17. Buss, J.F., Shor, P.: On the pagenumber of planar graphs. In: 16th ACM Symposium on Theory of Computing (Washington 1984), pp. 98–100. ACM, New York (1984)

  18. Camarena, O.A.: The van Kampen theorem (2021). https://www.matem.unam.mx/omar/groupoids/vankampen.pdf

  19. Chung, F.R.K., Leighton, F.T., Rosenberg, A.L.: Embedding graphs in books: a layout problem with applications to VLSI design. SIAM J. Algebr. Discrete Methods 8(1), 33–58 (1987)

    Article  MathSciNet  Google Scholar 

  20. Dillencourt, M.B., Eppstein, D., Hirschberg, D.S.: Geometric thickness of complete graphs. J. Graph Algorithms Appl. 4(3), 5–17 (2000)

    Article  MathSciNet  Google Scholar 

  21. Đoković, D.Ž., Golubitsky, O., Kotsireas, I.S.: Some new orders of Hadamard and skew-Hadamard matrices. J. Comb. Des. 22(6), 270–277 (2014)

  22. Dujmović, V., Eppstein, D., Hickingbotham, R., Morin, P., Wood, D.R.: Stack-number is not bounded by queue-number. Combinatorica 42(2), 151–164 (2021)

    Article  MathSciNet  Google Scholar 

  23. Dujmović, V., Eppstein, D., Suderman, M., Wood, D.R.: Drawings of planar graphs with few slopes and segments. Comput. Geom. 38(3), 194–212 (2007)

    Article  MathSciNet  Google Scholar 

  24. Dujmović, V., Morin, P., Yelle, C.: Two results on layered pathwidth and linear layouts. J. Graph Algorithms Appl. 25(1), 43–57 (2021)

    Article  MathSciNet  Google Scholar 

  25. Dujmović, V., Pór, A., Wood, D.R.: Track layouts of graphs. Discrete Math. Theor. Comput. Sci. 6(2), 497–521 (2004)

    MathSciNet  Google Scholar 

  26. Dujmović, V., Sidiropoulos, A., Wood, D.R.: Layouts of expander graphs. Chic. J. Theoret. Comput. Sci. 2016, # 1 (2016)

  27. Dujmović, V., Suderman, M., Wood, D.R.: Graph drawings with few slopes. Comput. Geom. 38(3), 181–193 (2007)

    Article  MathSciNet  Google Scholar 

  28. Dujmović, V., Wood, D.R.: Stacks, queues and tracks: layouts of graph subdivisions. Discrete Math. Theor. Comput. Sci. 7, 155–201 (2005)

    Article  MathSciNet  Google Scholar 

  29. Dujmović, V., Wood, D.R.: Graph treewidth and geometric thickness parameters. Discrete Comput. Geom. 37(4), 641–670 (2007)

    Article  MathSciNet  Google Scholar 

  30. Dujmović, V., Wood, D.R.: On the book thickness of \(k\)-trees. Discrete Math. Theor. Comput. Sci. 13(3), 39–44 (2011)

    MathSciNet  Google Scholar 

  31. Endo, T.: The pagenumber of toroidal graphs is at most seven. Discrete Math. 175(1–3), 87–96 (1997)

    Article  MathSciNet  Google Scholar 

  32. Eppstein, D.: Separating geometric thickness from book thickness (2001). arXiv:math/0109195

  33. Fedorov, E.S.: Introduction to the Theory of Figures. St, Petersburg (1885). (in Russian)

  34. Galil, Z., Kannan, R., Szemerédi, E.: On \(3\)-pushdown graphs with large separators. Combinatorica 9(1), 9–19 (1989)

    Article  MathSciNet  Google Scholar 

  35. Ganley, J.L., Heath, L.S.: The pagenumber of \(k\)-trees is \(O(k)\). Discrete Appl. Math. 109(3), 215–221 (2001)

    Article  MathSciNet  Google Scholar 

  36. Gromov, M.: Singularities, expanders and topology of maps. Part 2: from combinatorics to topology via algebraic isoperimetry. Geom. Funct. Anal. 20(2), 416–526 (2010)

  37. Hakimi, S.L., Mitchem, J., Schmeichel, E.: Star arboricity of graphs. Discrete Math. 149(1–3), 93–98 (1996)

    Article  MathSciNet  Google Scholar 

  38. Haslinger, Ch., Stadler, P.F.: RNA structures with pseudo-knots: graph-theoretical, combinatorial, and statistical properties. Bull. Math. Biol. 61(3), 437–467 (1999)

    Article  Google Scholar 

  39. Hatcher, A.: Algebraic Topology. Cambridge University Press, Cambridge (2002)

    Google Scholar 

  40. Haxell, P., Szabó, T., Tardos, G.: Bounded size components—partitions and transversals. J. Comb. Theory Ser. B 88(2), 281–297 (2003)

    Article  MathSciNet  Google Scholar 

  41. Heath, L.S.: Embedding planar graphs in seven pages. In: 25th Annual Symposium on Foundations of Computer Sciences (Singer Island 1984), pp. 74–83. IEEE (1984)

  42. Heath, L.S., Istrail, S.: The pagenumber of genus \(g\) graphs is \(O(g)\). J. Assoc. Comput. Mach. 39(3), 479–501 (1992)

    Article  MathSciNet  Google Scholar 

  43. Heath, L.S., Leighton, F.T., Rosenberg, A.L.: Comparing queues and stacks as mechanisms for laying out graphs. SIAM J. Discrete Math. 5(3), 398–412 (1992)

    Article  MathSciNet  Google Scholar 

  44. Hickingbotham, R., Wood, D.R.: Shallow minors, graph products and beyond planar graphs (2021). arXiv:2111.12412

  45. Kainen, P.C.: The book thickness of a graph II. Congr. Numer. 71, 127–132 (1990)

    MathSciNet  Google Scholar 

  46. Keszegh, B., Pach, J., Pálvölgyi, D., Tóth, G.: Drawing cubic graphs with at most five slopes. Comput. Geom. 40(2), 138–147 (2008)

    Article  MathSciNet  Google Scholar 

  47. Krauthgamer, R., Lee, J.R.: The intrinsic dimensionality of graphs. Combinatorica 27(5), 551–585 (2007)

    Article  MathSciNet  Google Scholar 

  48. Malitz, S.M.: Graphs with \(E\) edges have pagenumber \(O(\sqrt{E})\). J. Algorithms 17(1), 71–84 (1994)

    Article  MathSciNet  Google Scholar 

  49. Malitz, S.M.: Genus \(g\) graphs have pagenumber \(O(\sqrt{g})\). J. Algorithms 17(1), 85–109 (1994)

    Article  MathSciNet  Google Scholar 

  50. Ollmann, L.T.: On the book thicknesses of various graphs. Congr. Numer. 8, 459 (1973)

    MathSciNet  Google Scholar 

  51. Pach, J., Pálvölgyi, D.: Bounded-degree graphs can have arbitrarily large slope numbers. Electron. J. Comb. 13, # N1 (2006)

  52. Paley, R.E.A.C.: On orthogonal matrices. J. Math. Phys. 12, 311–320 (1933)

    Article  Google Scholar 

  53. Pemmaraju, S.V.: Exploring the Powers of Stacks and Queues via Graph Layouts. PhD thesis, Virginia Polytechnic Institute and State University (1992)

  54. Pupyrev, S.: Book embeddings of graph products (2020). arXiv:2007.15102

  55. Rosenberg, A.L.: The DIOGENES approach to testable fault-tolerant arrays of processors. IEEE Trans. Comput. 32(10), 902–910 (1983)

    Article  Google Scholar 

  56. Shahrokhi, F., Székely, L.A., Sýkora, O., Vrt’o, I.: The book crossing number of a graph. J. Graph Theory 21(4), 413–424 (1996)

    Article  MathSciNet  Google Scholar 

  57. Sylvester, J.J.: Thoughts on inverse orthogonal matrices, simultaneous sign-successions, and tessellated pavements in two or more colours, with applications to Newton’s rule, ornamental tile-work, and the theory of numbers. Lond. Edinb. Dublin Philos. Mag. J. Sci. 34(232), 461–475 (1867)

  58. Vandenbussche, J., West, D.B., Yu, G.: On the pagenumber of \(k\)-trees. SIAM J. Discrete Math. 23(3), 1455–1464 (2009)

    Article  MathSciNet  Google Scholar 

  59. Wood, D.R.: Bounded degree book embeddings and three-dimensional orthogonal graph drawing. In: 9th International Symposium on Graph Drawing (Vienna 2001). Lecture Notes in Computer Science, vol. 2265, pp. 312–327. Springer, Berlin (2002)

  60. Wood, D.R.: Queue layouts of graph products and powers. Discrete Math. Theor. Comput. Sci. 7(1), 255–268 (2005)

    MathSciNet  Google Scholar 

  61. Wood, D.R.: Defective and clustered graph colouring. Electron. J. Comb. DS, # 23 (2018)

  62. Yannakakis, M.: Embedding planar graphs in four pages. J. Comput. System Sci. 38(1), 36–67 (1989)

    Article  MathSciNet  Google Scholar 

  63. Yannakakis, M.: Planar graphs that need four pages. J. Comb. Theory Ser. B 145, 241–263 (2020)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

This work was initiated at the Workshop on Graph Product Structure Theory (BIRS21w5235) at the Banff International Research Station, 21–26 November 2021. Thanks to the other organisers and participants. Thanks to both referees for many helpful suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David R. Wood.

Additional information

Editor in Charge: Csaba D. Tóth

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Norin is supported by an NSERC Discovery Grant. Hickingbotham is supported by an Australian Government Research Training Program Scholarship. Wood is supported by the Australian Research Council. Eppstein is supported in part by NSF grant CCF-2212129.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Eppstein, D., Hickingbotham, R., Merker, L. et al. Three-Dimensional Graph Products with Unbounded Stack-Number. Discrete Comput Geom 71, 1210–1237 (2024). https://doi.org/10.1007/s00454-022-00478-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00454-022-00478-6

Keywords

Mathematics Subject Classification

Navigation