Skip to main content
Log in

Polarization Problem on a Higher-Dimensional Sphere for a Simplex

  • Published:
Discrete & Computational Geometry Aims and scope Submit manuscript

Abstract

We study the problem of maximizing the minimal value over the sphere \(S^{d-1}\subset {\mathbb {R}}^d\) of the potential generated by a configuration of \(d+1\) points on \(S^{d-1}\) (the maximal discrete polarization problem). The points interact via the potential given by a function f of the Euclidean distance squared, where \(f:[0,4]\rightarrow (-\infty ,\infty ]\) is continuous (in the extended sense), decreasing on [0, 4], and finite and convex on (0, 4], with a concave or convex derivative \(f'\). We prove that the configuration of the vertices of a regular d-simplex inscribed in \(S^{d-1}\) is optimal. This result is new for \(d>3\) (certain special cases for \(d=2\) and \(d=3\) are also new). As a byproduct, we find a simpler proof for the known optimal covering property of the vertices of a regular d-simplex inscribed in \(S^{d-1}\).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ambrus, G.: Analytic and Probabilistic Problems in Discrete Geometry. PhD thesis, University College London (2009). https://users.renyi.hu/~ambrus/dissertation.pdf

  2. Ambrus, G., Ball, K.M., Erdélyi, T.: Chebyshev constants for the unit circle. Bull. Lond. Math. Soc. 45(2), 236–248 (2013)

    Article  MathSciNet  Google Scholar 

  3. Ambrus, G., Nietert, S.: Polarization, sign sequences, and isotropic vector systems. Pac. J. Math. 303(2), 385–399 (2019)

    Article  MathSciNet  Google Scholar 

  4. Böröczky Jr., K.: Finite Packing and Covering. Cambridge Tracts Mathematics, vol. 154. Cambridge University Press, Cambridge (2004)

  5. Borodachov, S.V., Bosuwan, N.: Asymptotics of discrete Riesz \(d\)-polarization on subsets of \(d\)-dimensional manifolds. Potential Anal. 41(1), 35–49 (2014)

    Article  MathSciNet  Google Scholar 

  6. Borodachov, S.V., Hardin, D.P., Reznikov, A., Saff, E.B.: Optimal discrete measures for Riesz potentials. Trans. Am. Math. Soc. 370(10), 6973–6993 (2018)

    Article  MathSciNet  Google Scholar 

  7. Borodachov, S.V., Hardin, D.P., Saff, E.B.: Discrete Energy on Rectifiable Sets. Springer Monographs in Mathematics. Springer, New York (2019)

    Book  Google Scholar 

  8. Bosuwan, N., Ruengrot, P.: Constant Riesz potentials on a circle in a plane with an application to polarization optimality problems. ScienceAsia 43, 267–274 (2017)

    Article  Google Scholar 

  9. Erdélyi, T., Saff, E.B.: Riesz polarization inequalities in higher dimensions. J. Approx. Theory 171, 128–147 (2013)

    Article  MathSciNet  Google Scholar 

  10. Farkas, B., Nagy, B.: Transfinite diameter, Chebyshev constant and energy on locally compact spaces. Potential Anal. 28(3), 241–260 (2008)

    Article  MathSciNet  Google Scholar 

  11. Farkas, B., Nagy, B., Révész, S.Gy.: A minimax problem for sums of translates on the torus. Trans. Lond. Math. Soc. 5(1), 1–46 (2018)

  12. Farkas, B., Révész, S.Gy.: Potential theoretic approach to rendezvous numbers. Monatsh. Math. 148(4), 309–331 (2006)

  13. Fejes Tóth, L.: Lagerungen in der Ebene, auf der Kugel und im Raum. Grundlehren der Mathematischen Wissenschaften in Einzeldarstellungen mit besonderer Berücksichtigung der Anwendungsgebiete, vol. 65. Springer, Berlin (1953)

  14. Galiev, Sh.I.: Multiple packings and coverings of a sphere. Discrete Math. Appl. 6(4), 413–426 (1996)

  15. Hardin, D.P., Kendall, A.P., Saff, E.B.: Polarization optimality of equally spaced points on the circle for discrete potentials. Discrete Comput. Geom. 50(1), 236–243 (2013)

    Article  MathSciNet  Google Scholar 

  16. Hardin, D.P., Petrache, M., Saff, E.B.: Unconstrained polarization (Chebyshev) problems: basic properties and Riesz kernel asymptotics. Potential Analysis (2020). https://doi.org/10.1007/s11118-020-09875-z

    Article  MATH  Google Scholar 

  17. Nikolov, N., Rafailov, R.: On the sum of powered distances to certain sets of points on the circle. Pac. J. Math. 253(1), 157–168 (2011)

    Article  MathSciNet  Google Scholar 

  18. Nikolov, N., Rafailov, R.: On extremums of sums of powered distances to a finite set of points. Geom. Dedicata 167, 69–89 (2013)

    Article  MathSciNet  Google Scholar 

  19. Ohtsuka, M.: On various definitions of capacity and related notions. Nagoya Math. J. 30, 121–127 (1967)

    Article  MathSciNet  Google Scholar 

  20. Reznikov, A., Saff, E., Volberg, A.: Covering and separation of Chebyshev points for non-integrable Riesz potentials. J. Complex. 46, 19–44 (2018)

    Article  MathSciNet  Google Scholar 

  21. Simanek, B.: Asymptotically optimal configurations for Chebyshev constants with an integrable kernel. New York J. Math. 22, 667–675 (2016)

    MathSciNet  MATH  Google Scholar 

  22. Stolarsky, K.B.: The sum of the distances to certain pointsets on the unit circle. Pac. J. Math. 59(1), 241–251 (1975)

    Article  MathSciNet  Google Scholar 

  23. Stolarsky, K.B.: The sum of the distances to \(N\) points on a sphere. Pac. J. Math. 57(2), 563–573 (1975)

    Article  MathSciNet  Google Scholar 

  24. Su, Y.: Discrete Minimal Energy on Flat Tori and Four-Point Maximal Polarization on \(S^2\). PhD thesis, Vanderbilt University (2015)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sergiy Borodachov.

Additional information

Editor in Charge: Kenneth Clarkson

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix A

Appendix A

In Sect. 4 we use the following known result, see [23, (5.10)] or [18]. For completeness, we give its proof.

Proposition A.1

Let \(\omega _d^*=\{\mathbf{x}_0,\mathbf{x}_1,\ldots ,\mathbf{x}_d\}\) be the set of vertices of a regular d-simplex inscribed in \(S^{d-1}\), \(d\ge 2\). Then for any point \(\mathbf{x}\in {\mathbb {R}}^d\),

$$\begin{aligned} \sum _{i=0}^{d}(\mathbf{x}\cdot \mathbf{x}_i)^2=\frac{d+1}{d}|\mathbf{x}|^2. \end{aligned}$$
(35)

Proof

This proposition can be proven in different ways. We will prove it using induction on dimension. For \(d=2\), without loss of generality, we can let \(\mathbf{x}_0=(1,0)\), \(\mathbf{x}_1=(-1/2,\sqrt{3}/2)\), and \(\mathbf{x}_2=(-1/2,-\sqrt{3}/2)\). Then for every \(\mathbf{x}=(x_1,x_2)\in {\mathbb {R}}^2\), we have

$$\begin{aligned} \sum _{i=0}^{2}(\mathbf{x}\cdot \mathbf{x}_i)^2=x_1^2+\frac{(x_1-\sqrt{3} x_2)^2}{4}+\frac{(x_1+\sqrt{3} x_2)^2}{4}=\frac{3}{2} x_1^2+\frac{3}{2} x_2^2=\frac{3}{2}\quad |\mathbf{x}|^2. \end{aligned}$$

Assume now that \(d>2\) and that equality (35) holds for every \(\mathbf{x}\in {\mathbb {R}}^{d-1}\), and prove it for any \(\mathbf{x}\in {\mathbb {R}}^d\). Without loss of generality, we can denote \(\mathbf{x}_0=(0,\ldots ,0,1)\in {\mathbb {R}}^{d}\) and let \(H:=\{\mathbf{x}\in {\mathbb {R}}^d:\mathbf{x}\,{\bot }\,\mathbf{x}_0\}\). Given \(\mathbf{x}\in {\mathbb {R}}^d\), let \(a\in {\mathbb {R}}\) and \(\mathbf{b}\in H\) be such that \(\mathbf{x}=a\mathbf{x}_0+\mathbf{b}\). Then \(|\mathbf{x}|^2=a^2+|\mathbf{b}|^2\). Let also \(\mathbf{z}_i\in H\) be such that \(\mathbf{x}_i=-{\mathbf{x}_0}/{d}+\mathbf{z}_i\), \(i=1,\ldots ,d\). Observe that \(\mathbf{z}_1,\ldots ,\mathbf{z}_d\) are the vertices of a regular simplex in H inscribed in the sphere of radius \(R={\sqrt{d^2-1}}/{d}\) centered at \(\mathbf{0}\). Then \(\mathbf{x}\cdot \mathbf{x}_i=(a\mathbf{x}_0+\mathbf{b})\cdot (-{\mathbf{x}_0}/{d}+\mathbf{z}_i)=-{a}/{d}+\mathbf{b}\cdot \mathbf{z}_i\), \(i=1,\ldots ,d\). Using the induction assumption and the fact that \(\sum _{i=1}^{d}{} \mathbf{z}_i=\mathbf{0}\) as the vertices of a regular simplex with the center of mass at \(\mathbf{0}\), we obtain

$$\begin{aligned} \sum _{i=0}^{d}(\mathbf{x}\cdot \mathbf{x}_i)^2&=a^2+\sum _{i=1}^{d}\biggl (\!{-}\frac{a}{d}+\mathbf{b}\cdot \mathbf{z}_i\biggr )^{\!2}=\biggl (\!1+\frac{1}{d}\biggr )a^2-\frac{2a}{d}\quad \mathbf{b}\cdot \sum _{i=1}^{d}{} \mathbf{z}_i\\&\quad +\sum _{i=1}^{d}(\mathbf{b}\cdot \mathbf{z}_i)^2=\biggl (\!1+\frac{1}{d}\biggr )a^2+R^2\sum _{i=1}^{d}\left( \mathbf{b}\cdot \frac{\mathbf{z}_i}{R}\right) ^2\\&=\frac{d+1}{d}a^2+\frac{dR^2}{d-1}|\mathbf{b}|^2=\frac{d+1}{d}(a^2+|\mathbf{b}|^2)=\frac{d+1}{d}|\mathbf{x}|^2, \end{aligned}$$

and (35) follows by induction. \(\square \)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Borodachov, S. Polarization Problem on a Higher-Dimensional Sphere for a Simplex. Discrete Comput Geom 67, 525–542 (2022). https://doi.org/10.1007/s00454-021-00308-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00454-021-00308-1

Keywords

Navigation