Skip to main content
Log in

Euclidean Bottleneck Bounded-Degree Spanning Tree Ratios

  • Published:
Discrete & Computational Geometry Aims and scope Submit manuscript

Abstract

Inspired by the seminal works of Khuller et al. (SIAM J. Comput. 25(2), 355–368 (1996)) and Chan (Discrete Comput. Geom. 32(2), 177–194 (2004)) we study the bottleneck version of the Euclidean bounded-degree spanning tree problem. A bottleneck spanning tree is a spanning tree whose largest edge-length is minimum, and a bottleneck degree-K spanning tree is a degree-K spanning tree whose largest edge-length is minimum. Let \(\beta _K\) be the supremum ratio of the largest edge-length of the bottleneck degree-K spanning tree to the largest edge-length of the bottleneck spanning tree, over all finite point sets in the Euclidean plane. It is known that \(\beta _5=1\), and it is easy to verify that \(\beta _2\geqslant 2\), \(\beta _3\geqslant \sqrt{2}\), and \(\beta _4>1.175\). It is implied by the Hamiltonicity of the cube of the bottleneck spanning tree that \(\beta _2\leqslant 3\). The degree-3 spanning tree algorithm of Ravi et al. (25th Annual ACM Symposium on Theory of Computing, pp. 438–447. ACM, New York (1993)) implies that \(\beta _3\leqslant 2\). Andersen and Ras (Networks 68(4), 302–314 (2016)) showed that \(\beta _4\leqslant \sqrt{3}\). We present the following improved bounds: \(\beta _2\geqslant \sqrt{7}\), \(\beta _3\leqslant \sqrt{3}\), and \(\beta _4\leqslant \sqrt{2}\). As a result, we obtain better approximation algorithms for Euclidean bottleneck degree-3 and degree-4 spanning trees. As parts of our proofs of these bounds we present some structural properties of the Euclidean minimum spanning tree which are of independent interest.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Notes

  1. The cube of a graph G has the same vertices as G, and has an edge between two distinct vertices if and only if there exists a path, with at most three edges, between them in G.

References

  1. Abu-Affash, A.K., Biniaz, A., Carmi, P., Maheshwari, A., Smid, M.: Approximating the bottleneck plane perfect matching of a point set. Comput. Geom. 48(9), 718–731 (2015)

    Article  MathSciNet  Google Scholar 

  2. Andersen, P.J., Ras, C.J.: Minimum bottleneck spanning trees with degree bounds. Networks 68(4), 302–314 (2016)

    Article  MathSciNet  Google Scholar 

  3. Andersen, P.J., Ras, C.J.: Algorithms for Euclidean degree bounded spanning tree problems. Internat. J. Comput. Geom. Appl. 29(2), 121–160 (2019)

    Article  MathSciNet  Google Scholar 

  4. Andersen, P.J., Ras, C.J.: Degree bounded bottleneck spanning trees in three dimensions. J. Comb. Optim. 39(2), 457–491 (2020)

    Article  MathSciNet  Google Scholar 

  5. Angelini, P., Bruckdorfer, T., Chiesa, M., Frati, F., Kaufmann, M., Squarcella, C.: On the area requirements of Euclidean minimum spanning trees. Comput. Geom. 47(2B), 200–213 (2014)

    Article  MathSciNet  Google Scholar 

  6. Arkin, E.M., Fekete, S.P., Islam, K., Meijer, H., Mitchell, J.S.B., Núñez-Rodríguez, Y., Polishchuk, V., Rappaport, D., Xiao, H.: Not being (super)thin or solid is hard: a study of grid Hamiltonicity. Comput. Geom. 42(6–7), 582–605 (2009)

    Article  MathSciNet  Google Scholar 

  7. Camerini, P.M.: The min-max spanning tree problem and some extensions. Inf. Process. Lett. 7(1), 10–14 (1978)

    Article  MathSciNet  Google Scholar 

  8. Caragiannis, I., Kaklamanis, C., Kranakis, E., Krizanc, D., Wiese, A.: Communication in wireless networks with directional antennas. In: 20th Annual ACM Symposium on Parallelism in Algorithms and Architectures (Munich 2008), pp. 344–351. ACM, New York (2008)

  9. Chan, T.M.: Euclidean bounded-degree spanning tree ratios. Discrete Comput. Geom. 32(2), 177–194 (2004)

    Article  MathSciNet  Google Scholar 

  10. Cormen, T.H., Leiserson, ChE, Rivest, R.L.: Introduction to Algorithms. The MIT Electrical Engineering and Computer Science Series. MIT Press, Cambridge (1990)

    MATH  Google Scholar 

  11. Dobrev, S., Kranakis, E., Krizanc, D., Opatrny, J., Ponce, O.M., Stacho, L.: Strong connectivity in sensor networks with given number of directional antennae of bounded angle. Discrete Math. Algorithms Appl. 4(3), # 1250038 (2012)

  12. Dobrev, S., Kranakis, E., Morales Ponce, O., Plžík, M.: Robust sensor range for constructing strongly connected spanning digraphs in UDGs. In: Computer Science—Theory and Applications (7th International Computer Science Symposium in Russia (Nizhny Novgorod 2012)). Lecture Notes in Comput. Sci., vol. 7353, pp. 112–124. Springer, Heidelberg (2012)

  13. Fekete, S.P., Khuller, S., Klemmstein, M., Raghavachari, B., Young, N.: A network-flow technique for finding low-weight bounded-degree spanning trees. J. Algorithms 24(2), 310–324 (1997)

    Article  MathSciNet  Google Scholar 

  14. Fleischner, H.: The square of every two-connected graph is Hamiltonian. J. Comb. Theory Ser. B 16, 29–34 (1974)

    Article  MathSciNet  Google Scholar 

  15. Francke, A., Hoffmann, M.: The Euclidean degree-4 minimum spanning tree problem is NP-hard. In: 25th ACM Symposium on Computational Geometry (Aarhus 2009), pp. 179–188. ACM, New York (2009)

  16. Itai, A., Papadimitriou, Ch.H., Szwarcfiter, J.L.: Hamilton paths in grid graphs. SIAM J. Comput. 11(4), 676–686 (1982)

  17. Jothi, R., Raghavachari, B.: Degree-bounded minimum spanning trees. Discrete Appl. Math. 157(5), 960–970 (2009)

    Article  MathSciNet  Google Scholar 

  18. Karaganis, J.J.: On the cube of a graph. Can. Math. Bull. 11(2), 295–296 (1968)

    Article  MathSciNet  Google Scholar 

  19. Khuller, S., Raghavachari, B., Young, N.: Low-degree spanning trees of small weight. SIAM J. Comput. 25(2), 355–368 (1996)

    Article  MathSciNet  Google Scholar 

  20. Lesniak, L.: Graphs with \(1\)-Hamiltonian-connected cubes. J. Comb. Theory Ser. B 14, 148–152 (1973)

    Article  MathSciNet  Google Scholar 

  21. Monma, C., Suri, S.: Transitions in geometric minimum spanning trees. Discrete Comput. Geom. 8(3), 265–293 (1992)

    Article  MathSciNet  Google Scholar 

  22. Papadimitriou, Ch.H.: The Euclidean traveling salesman problem is NP-complete. Theoret. Comput. Sci. 4(3), 237–244 (1977)

  23. Papadimitriou, Ch.H., Vazirani, U.V.: On two geometric problems related to the travelling salesman problem. J. Algorithms 5(2), 231–246 (1984)

  24. Parker, R.G., Rardin, R.L.: Guaranteed performance heuristics for the bottleneck traveling salesman problem. Oper. Res. Lett. 2(6), 269–272 (1984)

    Article  MathSciNet  Google Scholar 

  25. Ravi, R., Marathe, M.V., Ravi, S.S., Rosenkrantz, D.J., Hunt, H.B.: Many birds with one stone: multi-objective approximation algorithms. In: 25th Annual ACM Symposium on Theory of Computing (San Diego 1993), pp. 438–447. ACM, New York (1993)

  26. Zbarsky, S.: On improved bounds for bounded degree spanning trees for points in arbitrary dimension. Discrete Comput. Geom. 51(2), 427–437 (2014)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

I thank Jean-Lou De Carufel for helpful suggestions on simplifying the proof of Lemma 6.2. Funding was provided by the Natural Sciences and Engineering Research Council of Canada.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ahmad Biniaz.

Additional information

Editor in Charge: Kenneth Clarkson

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This paper has appeared in SODA 2020. Supported by NSERC PDF.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Biniaz, A. Euclidean Bottleneck Bounded-Degree Spanning Tree Ratios. Discrete Comput Geom 67, 311–327 (2022). https://doi.org/10.1007/s00454-021-00286-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00454-021-00286-4

Keywords

Navigation