Skip to main content
Log in

Impossibility of Dimension Reduction in the Nuclear Norm

  • Published:
Discrete & Computational Geometry Aims and scope Submit manuscript

Abstract

Let \({\mathsf {S}}_1\) (the Schatten–von Neumann trace class) denote the Banach space of all compact linear operators \(T:\ell _2\rightarrow \ell _2\) whose nuclear norm \(\Vert T\Vert _{{\mathsf {S}}_1}=\sum _{j=1}^\infty \upsigma _j(T)\) is finite, where \(\{\upsigma _j(T)\}_{j=1}^\infty \) are the singular values of T. We prove that for arbitrarily large \(n\in {\mathbb {N}}\) there exists a subset \({\mathscr {C}}\subseteq {\mathsf {S}}_1\) with \(|{\mathscr {C}}|=n\) that cannot be embedded with bi-Lipschitz distortion O(1) into any \(n^{o(1)}\)-dimensional linear subspace of \({\mathsf {S}}_1\). \({\mathscr {C}}\) is not even a O(1)-Lipschitz quotient of any subset of any \(n^{o(1)}\)-dimensional linear subspace of \({\mathsf {S}}_1\). Thus, \({\mathsf {S}}_1\) does not admit a dimension reduction result á la Johnson and Lindenstrauss (Conference in modern analysis and probability, American Mathematical Society, Providence, 1984), which complements the work of Harrow et al. (Automata, languages and programming (ICALP 2011), Springer, Heidelberg, 2011) on the limitations of quantum dimension reduction under the assumption that the embedding into low dimensions is a quantum channel. Such a statement was previously known with \({\mathsf {S}}_1\) replaced by the Banach space \(\ell _1\) of absolutely summable sequences via the work of Brinkman and Charikar (J ACM 52(5):766–788, 2005). In fact, the above set \({\mathscr {C}}\) can be taken to be the same set as the one that Brinkman and Charikar considered, viewed as a collection of diagonal matrices in \({\mathsf {S}}_1\). The challenge is to demonstrate that \({\mathscr {C}}\) cannot be faithfully realized in an arbitrary low-dimensional subspace of \({\mathsf {S}}_1\), while Brinkman and Charikar obtained such an assertion only for subspaces of \({\mathsf {S}}_1\) that consist of diagonal operators (i.e., subspaces of \(\ell _1\)). We establish this by proving that the Markov 2-convexity constant of any finite dimensional linear subspace X of \({\mathsf {S}}_1\) is at most a universal constant multiple of \(\sqrt{\log \dim (X)}\).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Notes

  1. Formally, for the purpose of efficient approximate nearest neighbor search one cannot use a dimension reduction statement like (2) as a “black box” without additional information about the low-dimensional embedding itself rather than its mere existence. One would want the embedding to be fast to compute and “data oblivious,” as in the classical Johnson–Lindenstrauss lemma [45]. There is no need to give a precise formulation here because the present article is devoted to ruling out any low-dimensional low-distortion embedding whatsoever.

  2. We shall use throughout this article the following (standard) asymptotic notation. Given two quantities \(Q,Q'>0\), the notations \(Q\lesssim Q'\) and \(Q'\gtrsim Q\) mean that \(Q\leqslant {\mathsf {K}}Q'\) for some universal constant \({\mathsf {K}}>0\). The notation \(Q\asymp Q'\) stands for \((Q\lesssim Q') \wedge (Q'\lesssim Q)\). If we need to allow for dependence on certain parameters, we indicate this by subscripts. For example, in the presence of an auxiliary parameter \(\uppsi \), the notation \(Q\lesssim _\uppsi Q'\) means that \(Q\leqslant c(\uppsi )Q' \), where \(c(\uppsi ) >0\) is allowed to depend only on \(\uppsi \), and similarly for the notations \(Q\gtrsim _\uppsi Q'\) and \(Q\asymp _\uppsi Q'\).

  3. Those who prefer to consider the nuclear norm on \(m\times m\) matrices can do so throughout, since all of our results are equivalent to their matricial counterparts; see Lemma 2.1 below for a formulation of this (straightforward) statement.

  4. One should note here that \({\mathsf {S}}_1\) does not admit a bi-Lipschitz embedding into any \(L_1(\upmu )\) space, as follows by combining the corresponding linear result of [66, 85] with a classical differentiation argument [12], or directly by using a bi-Lipschitz invariant that is introduced in the forthcoming work [79].

  5. For many purposes it is important to work with complex scalars, and correspondingly complex matrices. However, for the purpose of the ensuing metric results, statements over \({\mathbb {R}}\) are equivalent to their complex counterparts.

References

  1. Alon, N.: Problems and results in extremal combinatorics. I. Discrete Math. 273(1–3), 31–53 (2003)

    MathSciNet  MATH  Google Scholar 

  2. Andoni, A.: Nearest neighbor search in high-dimensional spaces. In: Murlak F., Sankowski P. (eds.) Proceedings of the 36th International Symposium on Mathematical Foundations of Computer Science (MFCS 2011). Lecture Notes in Computer Science, vol. 6907, pp. 1. Springer, Berlin (2011). www.mit.edu/~andoni/papers/nns-mfcs.pptx

  3. Andoni, A., Charikar, M.S., Neiman, O., Nguy\(\tilde{\hat{{\rm e}}}\)n, H.L.: Near linear lower bound for dimension reduction in \(\ell _1\). In: 2011 IEEE 52nd Annual Symposium on Foundations of Computer Science (FOCS 2011), pp. 315–323. IEEE Computer Society, Los Alamitos (2011)

  4. Andoni, A., Naor, A., Neiman, O.: On isomorphic dimension reduction in \(\ell _1\) (2017). Preprint

  5. Andoni, A., Naor, A., Nikolov, A., Razenshteyn, I., Waingarten, E.: Data-dependent hashing via nonlinear spectral gaps. In: STOC’18—Proceedings of the 50th Annual ACM SIGACT Symposium on Theory of Computing, pp. 787–800. ACM, New York (2018)

  6. Artstein, S.: Proportional concentration phenomena on the sphere. Isr. J. Math. 132, 337–358 (2002)

    MathSciNet  MATH  Google Scholar 

  7. Ball, K.: The Ribe programme. Séminaire Bourbaki. Vol. 2011/2012. Exposés 1043–1058. Astérisque No. 352, Exp. No. 1047, 147–159 (2013)

  8. Ball, K.: Markov chains, Riesz transforms and Lipschitz maps. Geom. Funct. Anal. 2(2), 137–172 (1992)

    MathSciNet  MATH  Google Scholar 

  9. Ball, K., Carlen, E.A., Lieb, E.H.: Sharp uniform convexity and smoothness inequalities for trace norms. Invent. Math. 115(3), 463–482 (1994)

    MathSciNet  MATH  Google Scholar 

  10. Bartal, Y., Linial, N., Mendel, M., Naor, A.: On metric Ramsey-type phenomena. Ann. Math. 162(2), 643–709 (2005)

    MathSciNet  MATH  Google Scholar 

  11. Bates, S., Johnson, W.B., Lindenstrauss, J., Preiss, D., Schechtman, G.: Affine approximation of Lipschitz functions and nonlinear quotients. Geom. Funct. Anal. 9(6), 1092–1127 (1999)

    MathSciNet  MATH  Google Scholar 

  12. Benyamini, Y., Lindenstrauss, J.: Geometric Nonlinear Functional Analysis, vol. 1. American Mathematical Society Colloquium Publications, vol. 48. American Mathematical Society, Providence (2000)

    MATH  Google Scholar 

  13. Bhatia, R.: Matrix Analysis. Graduate Texts in Mathematics, vol. 169. Springer, New York (1997)

    MATH  Google Scholar 

  14. Bourgain, J.: On Lipschitz embedding of finite metric spaces in Hilbert space. Isr. J. Math. 52(1–2), 46–52 (1985)

    MathSciNet  MATH  Google Scholar 

  15. Bourgain, J., Lindenstrauss, J., Milman, V.: Approximation of zonoids by zonotopes. Acta Math. 162(1–2), 73–141 (1989)

    MathSciNet  MATH  Google Scholar 

  16. Bourgain, J., Milman, V., Wolfson, H.: On type of metric spaces. Trans. Amer. Math. Soc. 294(1), 295–317 (1986)

    MathSciNet  MATH  Google Scholar 

  17. Bouwmans, T., Serhat-Aybat, N., Zahzah, E. (eds.): Handbook of Robust Low-Rank and Sparse Matrix Decomposition: Applications in Image and Video Processing. CRC Press, Boca Raton (2016)

    MATH  Google Scholar 

  18. Brinkman, B., Charikar, M.: On the impossibility of dimension reduction in \(l_1\). J. ACM 52(5), 766–788 (2005)

    MathSciNet  MATH  Google Scholar 

  19. Candès, E.J., Recht, B.: Exact matrix completion via convex optimization. Found. Comput. Math. 9(6), 717–772 (2009)

    MathSciNet  MATH  Google Scholar 

  20. Candès, E.J., Tao, T.: The power of convex relaxation: near-optimal matrix completion. IEEE Trans. Inf. Theory 56(5), 2053–2080 (2010)

    MathSciNet  MATH  Google Scholar 

  21. Carlen, E.: Trace Inequalities and Quantum Entropy: An Introductory Course. Entropy and the Quantum. Contemporary Mathematics, vol. 529, pp. 73–140. American Mathematical Society, Providence (2010)

    MATH  Google Scholar 

  22. Charikar, M., Sahai, A.: Dimension reduction in the \(\ell _1\) norm. In: Proceedings of the 43rd Symposium on Foundations of Computer Science (FOCS 2002), pp. 551–560. IEEE Computer Society (2002)

  23. Clarkson, J.A.: Uniformly convex spaces. Trans. Amer. Math. Soc. 40(3), 396–414 (1936)

    MathSciNet  MATH  Google Scholar 

  24. Deshpande, A., Tulsiani, M., Vishnoi, N.K.: Algorithms and hardness for subspace approximation. In: Proceedings of the 22nd Annual ACM-SIAM Symposium on Discrete Algorithms, pp. 482–496. SIAM, Philadelphia (2011)

  25. Dilworth, S.J.: On the dimension of almost Hilbertian subspaces of quotient spaces. J. London Math. Soc. 30(3), 481–485 (1984)

    MathSciNet  MATH  Google Scholar 

  26. Dixmier, J.: Formes linéaires sur un anneau d’opérateurs. Bull. Soc. Math. France 81, 9–39 (1953)

    MathSciNet  MATH  Google Scholar 

  27. Dixmier, J.: Les algèbres d’opérateurs dans l’espace hilbertien (algèbres de von Neumann). Les Grands Classiques Gauthier-Villars. Éditions Jacques Gabay, Paris. Reprint of the second 1969 edition (1996)

  28. Dvoretzky, A.: Some results on convex bodies and Banach spaces. In: Proceedings of the International Symposium on Linear Spaces, pp. 123–160. Jerusalem Academic Press, Jerusalem (1961)

  29. Enflo, P.: On the nonexistence of uniform homeomorphisms between \(L_{p}\)-spaces. Ark. Mat. 8, 103–105 (1969)

    MathSciNet  MATH  Google Scholar 

  30. Enflo, P.: On infinite-dimensional topological groups. In: Séminaire sur la Géométrie des Espaces de Banach (1977–1978), Exp. No. 10–11. École Polytechnique, Palaiseau (1978)

  31. Eskenazis, A., Mendel, M., Naor, A.: Diamond convexity: a bifurcation in the Ribe program (2017). Preprint

  32. Figiel, T., Lindenstrauss, J., Milman, V.D.: The dimension of almost spherical sections of convex bodies. Acta Math. 139(1–2), 53–94 (1977)

    MathSciNet  MATH  Google Scholar 

  33. Gromov, M.: Metric Structures for Riemannian and Non-Riemannian Spaces. Progress in Mathematics, vol. 152. Birkhäuser, Boston (1999)

    MATH  Google Scholar 

  34. Gu, S., Xie, Q., Meng, D., Zuo, W., Feng, X., Zhang, L.: Weighted nuclear norm minimization and its applications to low level vision. Int. J. Comput. Vis. 121(2), 183–208 (2017)

    Google Scholar 

  35. Gu, S., Zhang, L., Zuo, W., Feng, X.: Weighted nuclear norm minimization with application to image denoising. In: 2014 IEEE Conference on Computer Vision and Pattern Recognition (CVPR 2014), pp. 2862–2869. IEEE Computer Society (2014)

  36. Gupta, A., Newman, I., Rabinovich, Yu., Sinclair, A.: Cuts, trees and \(l_1\)-embeddings of graphs. Combinatorica 24(2), 233–269 (2004)

    MathSciNet  MATH  Google Scholar 

  37. Gutman, I.: The energy of a graph. In: 10. Steiermärkisches Mathematisches Symposium (Stift Rein, Graz, 1978). Ber. Math.-Statist. Sekt. Forsch. Graz (100–105), Ber. No. 103 (1978)

  38. Harchaoui, Z., Douze, M., Paulin, M., Dudík, M., Malick, J.: Large-scale image classification with trace-norm regularization. In: Proceedings of the 2012 IEEE Conference on Computer Vision and Pattern Recognition, pp. 3386–3393. IEEE Computer Society (2012)

  39. Hardt, M., Ligett, K., McSherry, F.: A simple and practical algorithm for differentially private data release. In: Bartlett, P.L., et al. (eds.) Advances in Neural Information Processing Systems, vol. 2, pp. 2348–2356. Curran Associates, New York (2012)

    Google Scholar 

  40. Harrow, A.W., Montanaro, A., Short, A.J.: Limitations on quantum dimensionality reduction. In: Aceto, L., Henzinger, M., Sgall, J. (eds.) Automata, Languages and Programming (ICALP 2011). Part I. Lecture Notes in Computer Science, vol. 6755, pp. 86–97. Springer, Heidelberg (2011)

    Google Scholar 

  41. Heinonen, J.: Lectures on Analysis on Metric Spaces. Universitext. Springer, New York (2001)

    MATH  Google Scholar 

  42. Hytönen, T., Naor, A.: Heat flow and quantitative differentiation. J. Eur. Math. Soc. (JEMS) 21(11), 3415–3466 (2019)

    MathSciNet  MATH  Google Scholar 

  43. Indyk, P., Naor, A.: Nearest-neighbor-preserving embeddings. ACM Trans. Algorithms 3(3), 31 (2007)

    MathSciNet  MATH  Google Scholar 

  44. James, I.M.: Introduction to Uniform Spaces. London Mathematical Society Lecture Note Series, vol. 144. Cambridge University Press, Cambridge (1990)

    MATH  Google Scholar 

  45. Johnson, W.B., Lindenstrauss, J.: Extensions of Lipschitz mappings into a Hilbert space. In: Beals, A., et al. (eds.) Conference in Modern Analysis and Probability. Contemporary Mathematics, vol. 26, pp. 189–206. American Mathematical Society, Providence (1984)

    Google Scholar 

  46. Johnson, W.B., Lindenstrauss, J., Schechtman, G.: On Lipschitz embedding of finite metric spaces in low-dimensional normed spaces. In: Lindenstrauss, J., Milman, V.D. (eds.) Geometrical Aspects of Functional Analysis (1985/86). Lecture Notes in Mathematics, vol. 1267, pp. 177–184. Springer, Berlin (1987)

    Google Scholar 

  47. Johnson, W.B., Naor, A.: The Johnson–Lindenstrauss lemma almost characterizes Hilbert space, but not quite. Discrete Comput. Geom. 43(3), 542–553 (2010)

    MathSciNet  MATH  Google Scholar 

  48. Johnson, W.B., Schechtman, G.: Diamond graphs and super-reflexivity. J. Topol. Anal. 1(2), 177–189 (2009)

    MathSciNet  MATH  Google Scholar 

  49. Laakso, T.J.: Ahlfors \(Q\)-regular spaces with arbitrary \(Q>1\) admitting weak Poincaré inequality. Geom. Funct. Anal. 10(1), 111–123 (2000)

    MathSciNet  MATH  Google Scholar 

  50. Lafforgue, V., Naor, A.: Vertical versus horizontal Poincaré inequalities on the Heisenberg group. Isr. J. Math. 203(1), 309–339 (2014)

    MATH  Google Scholar 

  51. Lang, U., Plaut, C.: Bilipschitz embeddings of metric spaces into space forms. Geom. Dedicata 87(1–3), 285–307 (2001)

    MathSciNet  MATH  Google Scholar 

  52. Larsen, K.G., Nelson, J.: Optimality of the Johnson–Lindenstrauss lemma. In: Proceedings of the 58th Annual IEEE Symposium on Foundations of Computer Science (FOCS 2017), pp. 633–638. IEEE Computer Society, Los Alamitos (2017). https://arxiv.org/abs/1609.02094

  53. Lee, J.R., Naor, A.: Embedding the diamond graph in \(L_p\) and dimension reduction in \(L_1\). Geom. Funct. Anal. 14(4), 745–747 (2004)

    MathSciNet  MATH  Google Scholar 

  54. Lee, J.R., Naor, A., Peres, Y.: Trees and Markov convexity. Geom. Funct. Anal. 18(5), 1609–1659 (2009)

    MathSciNet  MATH  Google Scholar 

  55. Lee, J.R., Mendel, M., Naor, A.: Metric structures in \(L_1\): dimension, snowflakes, and average distortion. Eur. J. Comb. 26(8), 1180–1190 (2005)

    MATH  Google Scholar 

  56. Lewis, D.R.: Finite dimensional subspaces of \(L_{p}\). Stud. Math. 63(2), 207–212 (1978)

    MATH  Google Scholar 

  57. Li, C., Miklau, G.: Optimal error of query sets under the differentially-private matrix mechanism. In: Tan, W., et al. (eds.) Proceedings 16th International Conference on Database Theory (ICDT’13), pp. 272–283. ACM, New York (2013)

    Google Scholar 

  58. Li, X., Shi, Y., Gutman, I.: Graph Energy. Springer, New York (2012)

    MATH  Google Scholar 

  59. Li, Y., Woodruff, D.P.: Embeddings of Schatten norms with applications to data streams (2017). To appear in Proceedings of 44th International Colloquium on Automata, Languages, and Programming, ICALP 2017. https://arxiv.org/abs/1702.05626

  60. Li, Y., Woodruff, D.P.: Embeddings of Schatten norms with applications to data streams. In: Proceedings of the 44th International Colloquium on Automata, Languages, and Programming (ICALP 2017). LIPIcs. Leibniz International Proceedings in Informatics, vol. 80, Art. No. 60. Schloss Dagstuhl. Leibniz-Zentrum für Informatik, Wadern (2017)

  61. Linial, N., London, E., Rabinovich, Yu.: The geometry of graphs and some of its algorithmic applications. Combinatorica 15(2), 215–245 (1995)

    MathSciNet  MATH  Google Scholar 

  62. Löwner, K.: Über monotone Matrixfunktionen. Math. Z. 38(1), 177–216 (1934)

    MathSciNet  MATH  Google Scholar 

  63. Martínez, T., Torrea, J.L., Xu, Q.: Vector-valued Littlewood–Paley–Stein theory for semigroups. Adv. Math. 203(2), 430–475 (2006)

    MathSciNet  MATH  Google Scholar 

  64. Matoušek, J.: Note on bi-Lipschitz embeddings into normed spaces. Comment. Math. Univ. Carolin. 33(1), 51–55 (1992)

    MathSciNet  MATH  Google Scholar 

  65. Matoušek, J.: On the distortion required for embedding finite metric spaces into normed spaces. Isr. J. Math. 93, 333–344 (1996)

    MathSciNet  MATH  Google Scholar 

  66. McCarthy, C.A.: \(c_{p}\). Isr. J. Math. 5, 249–271 (1967)

    Google Scholar 

  67. Mendel, M., Naor, A.: Euclidean quotients of finite metric spaces. Adv. Math. 189(2), 451–494 (2004)

    MathSciNet  MATH  Google Scholar 

  68. Mendel, M., Naor, A.: Markov convexity and local rigidity of distorted metrics. J. Eur. Math. Soc. (JEMS) 15(1), 287–337 (2013)

    MathSciNet  MATH  Google Scholar 

  69. Mendel, M., Naor, A.: Spectral calculus and Lipschitz extension for barycentric metric spaces. Anal. Geom. Metr. Spaces 1, 163–199 (2013)

    MathSciNet  MATH  Google Scholar 

  70. Mendel, M., Naor, A.: Nonlinear spectral calculus and super-expanders. Publ. Math. Inst. Hautes Étud. Sci. 119, 1–95 (2014)

    MathSciNet  MATH  Google Scholar 

  71. Milman, V.D.: A new proof of A. Dvoretzky’s theorem on cross-sections of convex bodies. Funkcional Anal. Priložen. 5(4), 28–37 (1971)

    MathSciNet  Google Scholar 

  72. Milman, V.D.: Almost Euclidean quotient spaces of subspaces of a finite-dimensional normed space. Proc. Am. Math. Soc. 94(3), 445–449 (1985)

    MathSciNet  MATH  Google Scholar 

  73. Mirsky, L.: A trace inequality of John von Neumann. Monatsh. Math. 79(4), 303–306 (1975)

    MathSciNet  MATH  Google Scholar 

  74. Naor, A.: An introduction to the Ribe program. Jpn. J. Math. 7(2), 167–233 (2012)

    MathSciNet  MATH  Google Scholar 

  75. Naor, A.: Discrete Riesz transforms and sharp metric \(X_p\) inequalities. Ann. Math. 184(3), 991–1016 (2016)

    MathSciNet  MATH  Google Scholar 

  76. Naor, A.: A spectral gap precludes low-dimensional embeddings. In: Aronov, B., Katz, M.J. (eds.) 33rd International Symposium on Computational Geometry (SoCG 2017). Leibniz International Proceedings in Informatics, vol. 77, pp. 50:1–50:16. Schloss Dagstuhl. Leibniz-Zentrum für Informatik, Wadern (2017)

  77. Naor, A.: Metric dimension reduction: a snapshot of the Ribe program. In: Proceedings of the 2018 International Congress of Mathematicians, Rio de Janeiro, vol. I, pp. 767–846 (2018)

  78. Naor, A., Schechtman, G.: Metric \(X_p\) inequalities. Forum Math. Pi 4, e3 (2016)

    MATH  Google Scholar 

  79. Naor, A., Schechtman, G.: Obstructions to metric embeddings of Schatten classes (2017). Preprint

  80. Naor, A., Young, R.: Vertical perimeter versus horizontal perimeter. Ann. Math. 188(1), 171–279 (2018)

    MathSciNet  MATH  Google Scholar 

  81. Naor, A., Young, R.: Foliated corona decompositions (2019). Preprint

  82. Nikiforov, V.: The energy of graphs and matrices. J. Math. Anal. Appl. 326(2), 1472–1475 (2007)

    MathSciNet  MATH  Google Scholar 

  83. Ohta, S.-I.: Markov type of Alexandrov spaces of non-negative curvature. Mathematika 55(1–2), 177–189 (2009)

    MathSciNet  MATH  Google Scholar 

  84. Pisier, G.: Martingales with values in uniformly convex spaces. Isr. J. Math. 20(3–4), 326–350 (1975)

    MathSciNet  MATH  Google Scholar 

  85. Pisier, G.: Some results on Banach spaces without local unconditional structure. Compos. Math. 37(1), 3–19 (1978)

    MathSciNet  MATH  Google Scholar 

  86. Pisier, G.: Probabilistic methods in the geometry of Banach spaces. In: Letta, G., Pratelli, M. (eds.) Probability and Analysis. Lecture Notes in Mathematics, vol. 1206, pp. 167–241. Springer, Berlin (1986)

    Google Scholar 

  87. Recht, B.: A simpler approach to matrix completion. J. Mach. Learn. Res. 12, 3413–3430 (2011)

    MathSciNet  MATH  Google Scholar 

  88. Recht, B., Fazel, M., Parrilo, P.A.: Guaranteed minimum-rank solutions of linear matrix equations via nuclear norm minimization. SIAM Rev. 52(3), 471–501 (2010)

    MathSciNet  MATH  Google Scholar 

  89. Regev, O.: Entropy-based bounds on dimension reduction in \(L_1\). Isr J. Math. 195(2), 825–832 (2013)

    MATH  Google Scholar 

  90. Regev, O., Vidick, T.: Bounds on dimension reduction in the nuclear norm (2019). https://arxiv.org/abs/1901.09480

  91. Schechtman, G.: More on embedding subspaces of \(L_p\) in \(l^n_r\). Compos. Math. 61(2), 159–169 (1987)

    Google Scholar 

  92. Schechtman, G., Zvavitch, A.: Embedding subspaces of \(L_p\) into \(l^N_p\), \(0<p<1\). Math. Nachr. 227, 133–142 (2001)

    MathSciNet  MATH  Google Scholar 

  93. Simon, B.: Trace Ideals and Their Applications. Mathematical Surveys and Monographs, vol. 120, 2nd edn. American Mathematical Society, Providence (2005)

    MATH  Google Scholar 

  94. Talagrand, M.: Embedding subspaces of \(L_1\) into \(l^N_1\). Proc. Am. Math. Soc. 108(2), 363–369 (1990)

    Google Scholar 

  95. Tomczak-Jaegermann, N.: Finite-dimensional subspaces of uniformly convex and uniformly smooth Banach lattices and trace classes \(S_{p}\). Stud. Math. 66(3), 261–281 (1979–1980)

    MATH  Google Scholar 

  96. von Neumann, J.: Some matrix-inequalities and metrization of matric-space. Tomsk Univ. Rev. 1, 286–300 (1937). Reprinted in Collected Works, Pergamon Press (1962), iv, pp. 205–219

  97. Whyburn, G.T.: Topological Analysis. Princeton Mathematical Series, vol. 23. Princeton University Press, Princeton (1958)

    MATH  Google Scholar 

  98. Winter, A.: Quantum and classical message protect identification via quantum channels. Quantum Inf. Comput. 4(6–7), 563–578 (2004)

    MathSciNet  MATH  Google Scholar 

  99. Xu, Q.: Littlewood–Paley theory for functions with values in uniformly convex spaces. J. Reine Angew. Math. 504, 195–226 (1998)

    MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

We thank A. Andoni, R. Krauthgamer and M. Mendel for helpful input.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Assaf Naor.

Additional information

Editor in Charge: Kenneth Clarkson

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

A. Naor was supported by the BSF, the NSF, the Packard Foundation and the Simons Foundation. G. Schechtman was supported by the ISF. The research that is presented here was conducted under the auspices of the Simons Algorithms and Geometry (A&G) Think Tank. An extended abstract that announces the results that are obtained here appeared in the proceedings of the 29th annual ACM–SIAM Symposium on Discrete Algorithms (SODA 2018).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Naor, A., Pisier, G. & Schechtman, G. Impossibility of Dimension Reduction in the Nuclear Norm. Discrete Comput Geom 63, 319–345 (2020). https://doi.org/10.1007/s00454-019-00162-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00454-019-00162-2

Keywords

Mathematics Subject Classification

Navigation