Skip to main content
Log in

Reptilings and space-filling curves for acute triangles

  • Published:
Discrete & Computational Geometry Aims and scope Submit manuscript

Abstract

An r-gentiling is a dissection of a shape into \(r \ge 2\) parts that are all similar to the original shape. An r-reptiling is an r-gentiling of which all parts are mutually congruent. By applying gentilings recursively, together with a rule that defines an order on the parts, one may obtain an order in which to traverse all points within the original shape. We say such a traversal is a face-continuous space-filling curve if, at any level of recursion, the interior of the union of any set of consecutive parts is connected—that is, with two-dimensional shapes, consecutive parts must always meet along an edge. Most famously, the isosceles right triangle admits a 2-reptiling, which can be used to describe the face-continuous Sierpiński/Pólya space-filling curve; many other right triangles admit reptilings and gentilings that yield face-continuous space-filling curves as well. In this study we investigate which acute triangles admit non-trivial reptilings and gentilings, and whether these can form the basis for face-continuous space-filling curves. We derive several properties of reptilings and gentilings of acute (sometimes also obtuse) triangles, leading to the following conclusion: no face-continuous space-filling curve can be constructed on the basis of reptilings of acute triangles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Bader, M., Zenger, C.: Efficient storage and processing of adaptive triangular grids using Sierpiński curves. In: Proceedings of the 6th International Conference on Computational Science (ICCS’06). Lecture Notes in Computer Science, vol. 3991, pp. 673–680. Springer, Berlin (2006)

  2. Freese, R.W., Miller, A.K., Usiskin, Z.: Can every triangle be divided into \(n\) triangles similar to it? Am. Math. Mon. 77(8), 867–869 (1990)

    Article  MathSciNet  Google Scholar 

  3. Golomb, S.W.: Replicating figures in the plane. Math. Gaz. 48(366), 403–412 (1964)

    Article  MATH  Google Scholar 

  4. Haverkort, H., McGranaghan, M., Toma, L.: An edge quadtree for external memory. In: Proceedings of the 12th International Symposium on Experimental Algorithms (SEA’13). Lecture Notes in Computer Science, vol. 7933, pp. 115–126. Springer, Berlin (2013)

  5. Hilbert, D.: Ueber die stetige Abbildung einer Linie auf ein Flächenstück. Math. Ann. 38(3), 459–460 (1891)

    Article  MathSciNet  MATH  Google Scholar 

  6. Kaiser, H.: Selbstähnliche Dreieckszerlegungen. Friedrich-Schiller-Universität, Jena (1990)

    Google Scholar 

  7. Kamel, I., Faloutsos, C.: On packing R-trees. In: Bhargava, B., et al. (eds.) Proceedings of the 2nd International Conference on Information and Knowledge Management (CIKM’93), pp. 490–499. ACM, New York (1993)

  8. Lebesgue, H.: Leçons sur l’intégration et la recherche des fonctions primitives, pp. 44–45. Gauthier-Villars, Paris (1904)

    MATH  Google Scholar 

  9. Morton, G.M.: A Computer Oriented Geodetic Data Base and a New Technique in File Sequencing. International Business Machines Corporation, Ottawa (1966)

    Google Scholar 

  10. Peano, G.: Sur une courbe, qui remplit toute une aire plane. Math. Ann. 36(1), 157–160 (1890)

    Article  MathSciNet  MATH  Google Scholar 

  11. Platzman, L.K., Bartholdi III, J.J.: Spacefilling curves and the planar travelling salesman problem. J. ACM 36(4), 719–737 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  12. Pólya, G.: Über eine Peanosche Kurve. Bull. Int. Acad. Sci. Cracovie A 1913, 305–313 (1913)

    Google Scholar 

  13. Sagan, H.: Space-Filling Curves. Universitext. Springer, New York (1994)

    Book  MATH  Google Scholar 

  14. Sierpiński, W.: Oeuvres Choisies, vol. II, pp. 52–66. PWN, Warszawa (1975)

    Google Scholar 

  15. Snover, S.L., Waiveris, C., Williams, J.K.: Rep-tiling for triangles. Discrete Math. 91(2), 193–200 (1991)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

We thank Dirk Gerrits for his help in obtaining our first proofs of Theorem 5.6.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kilian Matzke.

Additional information

Editor in Charge: János Pach

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gottschau, M., Haverkort, H. & Matzke, K. Reptilings and space-filling curves for acute triangles. Discrete Comput Geom 60, 170–199 (2018). https://doi.org/10.1007/s00454-017-9953-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00454-017-9953-0

Keywords

Navigation