Skip to main content
Log in

Delaunay Triangulations of Closed Euclidean d-Orbifolds

  • Published:
Discrete & Computational Geometry Aims and scope Submit manuscript

Abstract

We give a definition of the Delaunay triangulation of a point set in a closed Euclidean d-manifold, i.e. a compact quotient space of the Euclidean space for a discrete group of isometries (a so-called Bieberbach group or crystallographic group). We describe a geometric criterion to check whether a partition of the manifold actually forms a triangulation (which subsumes that it is a simplicial complex). We provide an incremental algorithm to compute the Delaunay triangulation of the manifold defined by a given set of input points, if it exists. Otherwise, the algorithm returns the Delaunay triangulation of a finite-sheeted covering space of the manifold. The algorithm has optimal randomized worst-case time and space complexity. It extends to closed Euclidean orbifolds. An implementation for the special case of the 3D flat torus has been released in Cgal 3.5. To the best of our knowledge, this is the first general result on this topic.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Notes

  1. http://www.cgal.org/Events/PeriodicSpacesWorkshop/.

  2. http://www.lorentzcenter.nl/lc/web/2009/357/info.php3?wsid=357.

  3. The number of Bieberbach groups by dimension is assigned the id A006227 in the On-Line Encyclopedia of Integer Sequences [44]. The number of torsion-free Bieberbach groups is assigned the id A059104.

  4. We skip the technicalities of the initialization of the triangulation with the first point of \({\mathcal {P}}\).

  5. The incremental algorithm actually requires a slightly stronger result than Proposition 6.2. All details can be found in [12, Sect. 2.3.1], in particular Lemma 2.3.2. We omit them in this paper, since the precise setting and the proof are long and technical.

  6. Using the random point generator from Cgal to generate uniformly distributed points in a cube.

References

  1. Alliez, P., Rineau, L., Tayeb, S., Tournois, J., Yvinec, M.: 3D mesh generation. In: CGAL User and Reference Manual. CGAL Editorial Board. http://doc.cgal.org/latest/Manual/packages.html#PkgMesh_3Summary

  2. Armstrong, M.A.: Basic Topology. Springer, Berlin (1982)

    MATH  Google Scholar 

  3. Bernauer, J.: Computational structural biology: periodic triangulations for molecular dynamics. Talk at the workshop ‘Subdivide and tile’ (2009) http://www.lorentzcenter.nl/lc/web/2009/357/info.php3?wsid=357

  4. Bieberbach, L.: Über die Bewegungsgruppen des \(n\)-dimensionalen euklidischen Raumes mit einem endlichen Fundamentalbereich. Gött. Nachr. 1910, 75–84 (1910). https://eudml.org/doc/58754

  5. Bogdanov, M., Teillaud, M., Vegter, G.: Delaunay triangulations on orientable surfaces of low genus. In: Proceedings of the Thirty-second International Symposium on Computational Geometry (2016). https://hal.inria.fr/hal-01276386

  6. Boileau, M., Maillot, S., Porti, J.: Three-Dimensional Orbifolds and Their Geometric Structures. Société Mathémathique de France, Paris (2003)

    MATH  Google Scholar 

  7. Boissonnat, J.-D., Yvinec, M.: Algorithmic Geometry. Cambridge University Press, Cambridge (1998). Translated by Hervé Brönnimann, http://www.cup.cam.ac.uk/Scripts/webbook.asp?isbn=0521563224

  8. Boulch, A., de Verdière É.C., Nakamoto, A.: Irreducible triangulations of surfaces with boundary. Graphs Comb. 29(6), 1675–1688 (2013). Also in arXiv:1103.5364

  9. Bowyer, Adrian: Computing Dirichlet tessellations. Comput. J. 24, 162–166 (1981)

    Article  MathSciNet  Google Scholar 

  10. Brakke, K.A., Sullivan, J.M.: Using symmetry features of the surface evolver to study foams. In: Hege, H.-C., Polthier, K. (eds.) Visualization and Mathematics: Experiments, Simulations and Environments, pp. 95–118. Springer, Berlin (1997). http://portal.acm.org/citation.cfm?id=270122.270129

  11. Campayo, D.D.: Sklogwiki—Boundary Conditions. http://www.sklogwiki.org/SklogWiki/index.php/Boundary_conditions

  12. Caroli, M.: Triangulating Point Sets in Orbit Spaces. Thèse de doctorat en sciences, Université de Nice-Sophia Antipolis, France (2010). http://tel.archives-ouvertes.fr/tel-00552215/

  13. Caroli, M., Teillaud, M.: 3D periodic triangulations. In: CGAL User and Reference Manual. CGAL Editorial Board. http://doc.cgal.org/latest/Manual/packages.html#PkgPeriodic3Triangulation3Summary

  14. Caroli, M., Teillaud, M.: Video: On the computation of 3D periodic triangulations. In: Proceedings of the Twenty-Fourth Annual Symposium on Computational Geometry, pp. 222–223 (2008). http://www.computational-geometry.org/SoCG-videos/socg08video/

  15. Caroli, M., Teillaud, M.: Computing 3D periodic triangulations. In: Proceedings of the 17th European Symposium on Algorithms. Lecture Notes in Computer Science. vol. 5757, pp. 37–48 (2009). http://hal.inria.fr/inria-00356871/

  16. Caroli, M., Teillaud, M.: Delaunay triangulations of point sets in closed Euclidean \(d\)-manifolds. In: Proceedings of the Twenty-Seventh Annual Symposium on Computational Geometry, pp. 274–282 (2011). https://hal.inria.fr/hal-01101094

  17. CGAL: Computational Geometry Algorithms Library. http://www.cgal.org

  18. Chossat, P., Faugeras, O.: Hyperbolic planforms in relation to visual edges and textures perception. PLoS Comput. Biol. 5(12):e1000625 (2009). https://hal.inria.fr/hal-00807344

  19. Chossat, P., Faye, G., Faugeras, O.: Bifurcation of hyperbolic planforms. J. Nonlinear Sci. 21(4):465–498 (2011). https://hal.inria.fr/hal-00807355

  20. de Berg, M., van Kreveld, M., Overmars, M., Schwarzkopf, O.: Computational Geometry: Algorithms and Applications, 2nd edn. Springer, Berlin (2000)

    Book  MATH  Google Scholar 

  21. Delage, C., Devillers, O.: Spatial sorting. In: CGAL User and Reference Manual. CGAL Editorial Board. http://doc.cgal.org/latest/Manual/packages.html#PkgSpatialSortingSummary

  22. Devillers, O.: The Delaunay hierarchy. Int. J. Found. Comput. Sci. 13, 163–180 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  23. de Fabritiis, G., Coveney, P.V.: Dynamical geometry for multiscale dissipative particle dynamics. http://xxx.lanl.gov/abs/cond-mat/0301378v1 (2003)

  24. Dolbilin, N.P., Huson, D.H.: Periodic Delone tilings. Period. Math. Hung. 34(1–2), 57–64 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  25. Devillers, O., Teillaud, M.: Perturbations and vertex removal in a 3D Delaunay triangulation. In: Proceedings of the Fourteenth ACM-SIAM Symposium on Discrete Algorithms, pp. 313–319, (2003). http://hal.inria.fr/inria-00166710

  26. Devillers, O., Teillaud, M.: Perturbations for Delaunay and weighted Delaunay 3D triangulations. Comput. Geom. 44, 160–168 (2011). http://hal.inria.fr/inria-00560388/

  27. Edelsbrunner, H., Harer, J.L.: Computational Topology: An Introduction. American Mathematical Society, Providence, RI (2010)

    MATH  Google Scholar 

  28. Fisher, M., Springborn, B., Schröder, P., Bobenko, A.I.: An algorithm for the construction of intrinsic Delaunay triangulations with applications to digital geometry processing. Computing 81(2–3), 199–213 (2007) (Special Issue on Industrial Geometry)

  29. The GAP Group.: GAP—Groups, Algorithms, and Programming, Version 4.4.12 (2008). http://www.gap-system.org

  30. Graham, R.L., Grötschel, M., Lovász, L. (eds.): Handbook of Combinatorics. Elsevier, Amsterdam (1995)

    MATH  Google Scholar 

  31. Grima, C.I., Márquez, A.: Computational Geometry on Surfaces. Kluwer Academic Publishers, Boston (2001)

    Book  MATH  Google Scholar 

  32. Henle, M.: A Combinatorial Introduction to Topology. Dover Publication, New York (1979)

    MATH  Google Scholar 

  33. Hidding, J., van de Weygaert, R., Vegter, G., Jones, B.J.T., Teillaud, M.: Video: The sticky geometry of the cosmic web. In: Proceedings of the Twenty-Eighth Annual Symposium on Computational Geometry, pp. 421–422 (2012) http://www.computational-geometry.org/SoCG-videos/socg12video/

  34. Kruithof, N.: 2D periodic triangulations. In: CGAL User and Reference Manual. CGAL Editorial Board. http://doc.cgal.org/latest/Manual/packages.html#PkgPeriodic2Triangulation2Summary

  35. Lee, J.M.: Introduction to Topological Manifolds. Springer, New York (2000)

    MATH  Google Scholar 

  36. Lindahl, E., van der Spoel, D., Hess, B., et al.: Gromacs, a versatile package to perform molecular dynamics (2010) version 4.5.3. http://www.gromacs.org/

  37. Moesen, M.: Periodicity and the design of bone scaffolds (2008) Talk at the CGAL prospective workshop on Geometric Computing in Periodic Spaces. http://www.cgal.org/Events/PeriodicSpacesWorkshop/

  38. Mazón, M., Recio, T.: Voronoi diagrams on orbifolds. Comput. Geom. 8, 219–230 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  39. Pion, S., Teillaud, M.: 3D triangulations. In: CGAL User and Reference Manual. CGAL Editorial Board. http://doc.cgal.org/latest/Manual/packages.html#PkgTriangulation3Summary

  40. Rong, G., Jin, M., Shuai, L., Guo, X.: Centroidal Voronoi tessellation in universal covering space of manifold surfaces. Comput. Aided Geom. Des. 28(8), 475–496 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  41. Robins, V.: Betti number signatures of homogeneous Poisson point processes. Phys. Rev. E 74, 061107 (2006)

    Article  MathSciNet  Google Scholar 

  42. Rineau, L., Yvinec, M.: Meshing 3D domains bounded by piecewise smooth surfaces. In: Proceedings of the Sixteenth International Meshing Roundtable, pp. 443–460 (2007)

  43. Sims, C.C.: Computing with Finitely Presented Groups. Cambridge University Press, Cambridge (1994)

    Book  MATH  Google Scholar 

  44. Sloane, N.J.A.: The Online Encyclopedia of Integer Sequences. http://oeis.org/

  45. Sousbie, T.: The persistent cosmic web and its filament structure I: Theory and implementation. Mon. Not. R. Astron. Soc. 414, 350–383 (2011) Also in arXiv:1009.4015

  46. Spanier, E.H.: Algebraic Topology. Springer, New York (1966)

    MATH  Google Scholar 

  47. Sousbie, T., Pichon, C., Kawahara, H.: The persistent cosmic web and its filament structure II: illustrations (2011) Also in arXiv:1009.4014

  48. Thompson, K.E.: Fast and robust Delaunay tessellation in periodic domains. Int. J. Numer. Methods Eng. 55, 1345–1366 (2002)

    Article  MATH  Google Scholar 

  49. Thurston, W.P.: Three-Dimensional Geometry and Topology. Princeton University Press, Princeton (1997)

    MATH  Google Scholar 

  50. Thurston, W.P.: The Geometry and Topology of Three-Manifolds (2002) http://www.msri.org/publications/books/gt3m/

  51. van de Weygaert, R., Pranav, P., Jones, B.J.T., Bos, E.G.P., Vegter, G., Edelsbrunner, H., Teillaud, M., Hellwing, W.A., Park, C., Hidding, J., Wintraecken, M.: Probing dark energy with alpha shapes and Betti numbers. Research report (2011) Also in arXiv:1110.5528

  52. van de Weygaert, R., Platen, E., Vegter, G., Eldering, B., Kruithof, N.: Alpha shape topology of the cosmic web. In: Proceedings of the 2010 International Symposium on Voronoi Diagrams in Science and Engineering, ISVD ’10, pp. 224–234 (2010) Also in arXiv:1006.2765

  53. van de Weygaert, R., Vegter, G., Edelsbrunner, H., Jones, B.J.T., Pranav, P., Park, C., Hellwing, W.A., Eldering, B., Kruithof, N., Bos, E.G.P., Hidding, J., Feldbrugge, J., ten Have, E., van Engelen, M., Caroli, M., Teillaud, M.: Alpha, Betti and the megaparsec universe: on the homology and topology of the cosmic web. In: Transactions on Computational Science XIV. Lecture Notes in Computer Science, vol. 6970, pp. 60–101. Springer, Berlin (2011). http://www.springerlink.com/content/334357373166n902/

  54. Weiss, D.: How hydrophobic Buckminsterfullerene affects surrounding water structure. INRIA Geometrica Seminar. http://www-sop.inria.fr/geometrica, March (2008)

  55. Wilson, P.M.H.: Curved Spaces. Cambridge University Press, Cambridge (2008)

    Google Scholar 

  56. Zomorodian, A.: Topology for Computing. Cambridge University Press, Cambridge (2005)

    Book  MATH  Google Scholar 

  57. Zomorodian, A.: The tidy set: a minimal simplicial set for computing homology of clique complexes. In Proceedings of the Twenty-Sixth Annual Symposium on Computational Geometry, pp. 257–266 (2010)

Download references

Acknowledgments

The authors wish to thank Olivier Devillers for contributions to Sects. 5.3 and 6.3.2, Ramsay Dyer for discussions about the hypothesis in Proposition 2.1, Nico Kruithof for initial work on 3D periodic triangulations, Günter Rote for his comments on a preliminary version of [15], Jean-Marc Schlenker for helpful discussions, and Rien van de Weijgaert for providing us with data sets from cosmology research projects. We also acknowledge reviewers of a first version of this paper for their useful comments. This work was partially supported by the ANR (Agence Nationale de la Recherche) under the “Triangles” Project of the Programme blanc (No BLAN07-2_194137) http://www-sop.inria.fr/geometrica/collaborations/triangles/.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Monique Teillaud.

Additional information

Editor in Charge: Günter M. Ziegler

Preliminary versions of this paper were presented in conferences: the first one gave some results in the case of the 3D flat torus [15], and the second generalized the results to closed Euclidean d-manifolds [16]. Most of the work was done while the authors were working at INRIA Sophia Antipolis – Méditerranée.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Caroli, M., Teillaud, M. Delaunay Triangulations of Closed Euclidean d-Orbifolds. Discrete Comput Geom 55, 827–853 (2016). https://doi.org/10.1007/s00454-016-9782-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00454-016-9782-6

Keywords

Navigation