Skip to main content
Log in

The Edit Distance for Reeb Graphs of Surfaces

  • Published:
Discrete & Computational Geometry Aims and scope Submit manuscript

Abstract

Reeb graphs are structural descriptors that capture shape properties of a topological space from the perspective of a chosen function. In this work, we define a combinatorial distance for Reeb graphs of orientable surfaces in terms of the cost necessary to transform one graph into another by edit operations. The main contributions of this paper are the stability property and the optimality of this edit distance. More precisely, the stability result states that changes in the Reeb graphs, measured by the edit distance, are as small as changes in the functions, measured by the maximum norm. The optimality result states that the edit distance discriminates Reeb graphs better than any other distance for Reeb graphs of surfaces satisfying the stability property.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19

Similar content being viewed by others

References

  1. Barra, V., Biasotti, S.: 3D shape retrieval using kernels on extended Reeb graphs. Pattern Recogn. 46(11), 2985–2999 (2013)

    Article  Google Scholar 

  2. Bauer, U., Ge, X., Wang, Y.: Measuring distance between Reeb graphs. In: Proceedings of the Thirtieth Annual Symposium on Computational Geometry (New York, NY), SOCG’14, pp. 464–473. ACM (2014)

  3. Bauer, U., Munch, E., Wang, Y.: Strong equivalence of the interleaving and functional distortion metrics for Reeb graphs. In: L. Arge & J. Pach (eds.) 31st International Symposium on Computational Geometry (SoCG 2015) (Dagstuhl, Germany), Leibniz International Proceedings in Informatics (LIPIcs), vol. 34, pp. 461–475. Schloss Dagstuhl–Leibniz-Zentrum für Informatik, Wadern (2015)

  4. Biasotti, S., Marini, S., Spagnuolo, M., Falcidieno, B.: Sub-part correspondence by structural descriptors of 3D shapes. Comput.-Aided Des. 38(9), 1002–1019 (2006)

    Article  Google Scholar 

  5. Bolsinov, A.V., Fomenko, A.T.: Integrable Hamiltonian Systems: Geometry, Topology, Classification. CRC Press, Boca Raton (2004) (Translated from the 1999 Russian original)

  6. Cagliari, F., Di Fabio, B., Landi, C.: The natural pseudo-distance as a quotient pseudo-metric, and applications. Forum Math. 27(3), 1729–1742 (2015)

    Article  MathSciNet  Google Scholar 

  7. Cerf, J.: La stratification naturelle des espaces de fonctions différentiables réelles et le théorème de la pseudo-isotopie. Publ. Math. Inst. Hautes Étud. Sci. 39, 5–173 (1970)

  8. Cerri, A., Di Fabio, B., Ferri, M., Frosini, P., Landi, C.: Betti numbers in multidimensional persistent homology are stable functions. Math. Methods Appl. Sci. 36(12), 1543–1557 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  9. Cohen-Steiner, D., Edelsbrunner, H., Harer, J.: Stability of persistence diagrams. Discrete Comput. Geom. 37(1), 103–120 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  10. Cole-McLaughlin, K., Edelsbrunner, H., Harer, J., Natarajan, V., Pascucci, V.: Loops in Reeb graphs of 2-manifolds. Discrete Comput. Geom. 32, 231–244 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  11. Cornea, N.D., Silver, D., Min, P.: Curve-skeleton properties, applications, and algorithms. IEEE Trans. Vis. Comput. Gr. 13(3), 530–548 (2007)

    Article  Google Scholar 

  12. Di Fabio, B., Landi, C.: Reeb graphs of curves are stable under function perturbations. Math. Methods Appl. Sci. 35(12), 1456–1471 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  13. Donatini, P., Frosini, P.: Natural pseudodistances between closed manifolds. Forum Math. 16(5), 695–715 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  14. Gao, X., Xiao, B., Tao, D., Li, X.: A survey of graph edit distance. Pattern Anal. Appl. 13(1), 113–129 (2010)

    Article  MathSciNet  Google Scholar 

  15. Hilaga, M., Shinagawa, Y., Kohmura, T., Kunii, T.L.: Topology matching for fully automatic similarity estimation of 3D shapes. In: Proceedings of SIGGRAPH 2001, ACM Computer Graphics, pp. 203–212. ACM Press, Los Angeles (2001)

  16. Hirsch, M.: Differential Topology. Springer, New York (1976)

    Book  MATH  Google Scholar 

  17. Kudryavtseva, E.A.: Reduction of Morse functions on surfaces to canonical form by smooth deformation. Regul. Chaotic Dyn. 4(3), 53–60 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  18. Kulinich, E.V.: On topologically equivalent Morse functions on surfaces. Methods Funct. Anal. Topol. 4, 59–64 (1998)

    MathSciNet  MATH  Google Scholar 

  19. Masumoto, Y., Saeki, O.: A smooth function on a manifold with given Reeb graph. Kyushu J. Math. 65(1), 75–84 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  20. Milnor, J.: Lectures on the \(h\)-Cobordism Theorem. Notes by L. Siebenmann and J. Sondow. Princeton University Press, Princeton (1965)

    Google Scholar 

  21. Pascucci, V., Scorzelli, G., Bremer, P.-T., Mascarenhas, A.: Robust on-line computation of Reeb graphs: simplicity and speed. ACM Trans. Graph. (2007). doi:10.1145/1276377.1276449

  22. Reeb, G.: Sur les points singuliers d’une forme de Pfaff complétement intégrable ou d’une fonction numérique. C. R. Acad. Sci. 222, 847–849 (1946)

  23. Sergeraert, F.: Un théorème de fonctions implicites sur certains espaces de Fréchet et quelques applications. Ann. de I’Éc. Norm. 5, 599–660 (1972)

  24. Sharko, V.V.: Smooth and topological equivalence of functions on surfaces. Ukr. Math. J. 55(5), 832–846 (2003)

    Article  MathSciNet  Google Scholar 

  25. Sharko, V.V.: About Kronrod-Reeb graph of a function on a manifold. Methods Funct. Anal. Topol. 12(4), 389–396 (2006)

    MathSciNet  MATH  Google Scholar 

  26. Shinagawa, Y., Kunii, T.L.: Constructing a Reeb graph automatically from cross sections. IEEE Comput. Graph. Appl. 11(6), 44–51 (1991)

    Article  Google Scholar 

  27. Shinagawa, Y., Kunii, T.L., Kergosien, Y.L.: Surface coding based on Morse theory. IEEE Comput. Graph. Appl. 11(5), 66–78 (1991)

    Article  Google Scholar 

  28. Tangelder, J.W., Veltkamp, R.C.: A survey of content based 3D shape retrieval methods. Multimedia Tools Appl. 39(3), 441–471 (2008)

    Article  Google Scholar 

Download references

Acknowledgments

The authors wish to thank Professor V. V. Sharko for his clarifications on the uniqueness property of Reeb graphs of surfaces and for indicating the reference [18]. The research described in this article has been partially supported by GNSAGA-INdAM (Italy).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Claudia Landi.

Additional information

Editor in Charge: Herbert Edelsbrunner

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Di Fabio, B., Landi, C. The Edit Distance for Reeb Graphs of Surfaces. Discrete Comput Geom 55, 423–461 (2016). https://doi.org/10.1007/s00454-016-9758-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00454-016-9758-6

Keywords

Mathematics Subject Classification

Navigation