Skip to main content
Log in

Valid Orderings of Real Hyperplane Arrangements

  • Published:
Discrete & Computational Geometry Aims and scope Submit manuscript

Abstract

Given a real finite hyperplane arrangement \(\mathcal {A}\) and a point \(p\) not on any of the hyperplanes, we define an arrangement \(\mathrm {vo}(\mathcal {A},p)\), called the valid order arrangement, whose regions correspond to the different orders in which a line through \(p\) can cross the hyperplanes in \(\mathcal {A}\). If \(\mathcal {A}\) is the set of affine spans of the facets of a convex polytope \(\mathcal {P}\) and \(p\) lies in the interior of \(\mathcal {P}\), then the valid orderings with respect to \(p\) are just the line shellings of \(\mathcal {P}\) where the shelling line contains \(p\). When \(p\) is sufficiently generic, the intersection lattice of \(\mathrm {vo}(\mathcal {A},p)\) is the Dilworth truncation of the semicone of \(\mathcal {A}\). Various applications and examples are given. For instance, we determine the maximum number of line shellings of a \(d\)-polytope with \(m\) facets when the shelling line contains a fixed point \(p\). If \(\mathcal {P}\) is the order polytope of a poset, then the sets of facets visible from a point involve a generalization of chromatic polynomials related to list colorings.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Brylawski, T.: Coordinatizing the Dilworth truncation. In: Matroid Theory (Szeged, 1982). Colloquium Mathematical Society. János Bolyai, vol. 40, pp. 61–95. North-Holland, Amsterdam (1985)

  2. Brylawski, T.: Constructions. In: White, N. (ed.) Theory of Matroids, pp. 127–223. Cambridge University Press, Cambridge (1986)

    Chapter  Google Scholar 

  3. Develin, M.L.: Topics in discrete geometry. Ph.D. thesis, University of California at Berkeley (2003). http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.4.6000

  4. Dilworth, R.P.: Dependence relations in a semi-modular lattice. Duke Math. J. 11, 575–587 (1944)

    Article  MATH  MathSciNet  Google Scholar 

  5. Edelman, P.H.: Ordering points by linear functionals. Eur. J. Combin. 20, 145–152 (2000)

    Article  MathSciNet  Google Scholar 

  6. Goodman, J.E., Pollack, R.: Semispaces of configurations, cell complexes of arrangements. J. Combin. Theory Ser. A 37, 257–293 (1984)

    Article  MathSciNet  Google Scholar 

  7. Mason, J.H.: Matroids as the study of geometrical configurations. In: Aigner, M. (ed.) Higher Combinatorics. NATO Advanced Study Institutes Series 31, pp. 133–176. Reidel, Dordrecht (1977)

    Chapter  Google Scholar 

  8. Mu, L., Stanley, R.: Supersolvability and freeness for \(\psi \)-graphical arrangements. Discrete Comput. Geom. doi:10.1007/s00454-015-9684-z

  9. Orlik, P., Terao, H.: Arrangements of Hyperplanes. Grundlehren der Mathematischen Wissenschaften, vol. 300. Springer, Berlin (1992)

    MATH  Google Scholar 

  10. Oxley, J.: Matroid Theory. Oxford Graduate Texts in Mathematics, vol. 21, 2nd edn. Oxford University Press, Oxford (2011)

    Book  MATH  Google Scholar 

  11. Stanley, R.: Two poset polytopes. Discrete Comput. Geom. 1, 9–23 (1986)

    Article  MATH  MathSciNet  Google Scholar 

  12. Stanley, R.: Enumerative Combinatorics, vol. 2. Cambridge University Press, Cambridge (1999)

    Book  Google Scholar 

  13. Stanley, R.: An introduction to hyperplane arrangements. In: Miller, E., Reiner, V., Sturmfels, B. (eds.) Geometric Combinatorics. IAS/Park City Mathematics Series, vol. 13, pp. 389–496. American Mathematical Society, Providence, RI (2007)

    Google Scholar 

  14. Stanley, R.: Enumerative Combinatorics, vol. 1, 2nd edn. Cambridge University Press, Cambridge (2012)

    MATH  Google Scholar 

  15. Ungar, P.: \(2N\) noncollinear points determine at least \(2N\) directions. J. Combin. Theory Ser. A 33, 343–347 (1982)

    Article  MATH  MathSciNet  Google Scholar 

  16. Welsh, D.J.A.: Matroid Theory. L. M. S. Monographs, No. 8. Academic Press, London (1976)

    MATH  Google Scholar 

  17. White, N. (ed.): Theory of Matroids. Encyclopedia of Mathematics and Its Applications, vol. 26. Cambridge University Press, Cambridge (1986)

  18. Wikipedia, The Free Encyclopedia: Chordal graph. Wikimedia Foundation Inc., Whiteboard, FL

  19. Wikipedia, The Free Encyclopedia: List coloring. Wikimedia Foundation Inc., Whiteboard, FL

  20. Ziegler, G.: Lectures on Polytopes. Graduate Texts in Mathematics, vol. 152. Springer, New York (1995)

    MATH  Google Scholar 

Download references

Acknowledgments

Based upon work partially supported by the National Science Foundation under Grant No. DMS-1068625. I am grateful to the referees for several helpful remarks, including providing reference [5].

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Richard P. Stanley.

Additional information

Editor in charge: Günter M. Ziegler

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Stanley, R.P. Valid Orderings of Real Hyperplane Arrangements. Discrete Comput Geom 53, 951–964 (2015). https://doi.org/10.1007/s00454-015-9683-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00454-015-9683-0

Keywords

Mathematics Subject Classification

Navigation