Skip to main content
Log in

Fixed-Parameter Complexity and Approximability of Norm Maximization

  • Published:
Discrete & Computational Geometry Aims and scope Submit manuscript

Abstract

The problem of maximizing the \(p\)th power of a \(p\)-norm over a halfspace-presented polytope in \(\mathbb {R}^d\) is a convex maximization problem which plays a fundamental role in computational convexity. Mangasarian and Shiau showed in 1986 that this problem is \(\mathbb {NP}\)-hard for all values \(p \in \mathbb {N}\) if the dimension \(d\) of the ambient space is part of the input. In this paper, we use the theory of parameterized complexity to analyze how heavily the hardness of norm maximization relies on the parameter \(d\). More precisely, we show that for \(p=1\) the problem is fixed-parameter tractable (in FPT for short) but that for all \(p >1\) norm maximization is W[1]-hard. Concerning approximation algorithms for norm maximization, we show that, for fixed accuracy, there is a straightforward approximation algorithm for norm maximization in FPT running time, but there is no FPT-approximation algorithm with a running time depending polynomially on the accuracy. As with the \(\mathbb {NP}\)-hardness of norm maximization, the W[1]-hardness immediately carries over to various radius computation tasks in computational convexity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Notes

  1. The Exponential Time Hypothesis conjectures that \(n\)-variable 3-CNFSAT cannot be solved in \(2^{o(n)}\)-time; cf. [19, 21].

References

  1. Arora, S., Barak, B.: Computational Complexity: A Modern Approach. Cambridge University Press, Cambridge (2009)

    Book  Google Scholar 

  2. Bodlaender, H., Gritzmann, P., Klee, V., van Leeuwen, J.: Computational complexity of norm-maximization. Combinatorica 10(2), 203–225 (1990)

    Article  MATH  MathSciNet  Google Scholar 

  3. Brieden, A.: Geometric optimization problems likely not contained in APX. Discrete Comput. Geom. 28(2), 201–209 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  4. Brieden, A., Gritzmann, P., Kannan, R., Klee, V., Lovász, L., Simonovits, M.: Deterministic and randomized polynomial-time approximation of radii. Mathematika 48(1–2), 63–105 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  5. Cabello, S., Giannopoulos, P., Knauer, C.: On the parameterized complexity of \(d\)-dimensional point set pattern matching. In: Bodlaender, H., Langston, M. (eds.) Parameterized and Exact Computation, Lecture Notes in Computer Science, vol. 4169, pp. 175–183. Springer, Berlin (2006)

  6. Cabello, S., Giannopoulos, P., Knauer, C., Marx, D., Rote, G.: Geometric clustering: fixed-parameter tractability and lower bounds with respect to the dimension. ACM Trans. Algorithms 7(4), 43:1–43:27 (2011)

    Article  MathSciNet  Google Scholar 

  7. Chen, J., Chor, B., Fellows, M., Huang, X., Juedes, D., Kanj, I.A., Xia, G.: Tight lower bounds for certain parameterized NP-hard problems. Inf. Comput. 201(2), 216–231 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  8. de Berg, M., Cheong, O., van Kreveld, M., Overmars, M.: Computational Geometry: Algorithms and Applications, 3rd edn. Springer, Berlin (2008)

    Book  Google Scholar 

  9. Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity. Texts in Computer Science. Springer, Berlin (2013)

    Book  Google Scholar 

  10. Flum, J., Grohe, M.: Parameterized Complexity Theory. Texts in Theoretical Computer Science. Springer, Berlin (2006)

    Google Scholar 

  11. Garey, M.R., Johnson, D.S.: Computers and Intractability: A Guide to the Theory of NP-Completeness. W. H. Freeman & Co., New York (1979)

    MATH  Google Scholar 

  12. Giannopoulos, P., Knauer, C., Whitesides, S.: Parameterized complexity of geometric problems. Comput. J. 51(3), 372–384 (2008)

    Article  Google Scholar 

  13. Giannopoulos, P., Knauer, C., Rote, G.: The parameterized complexity of some geometric problems in unbounded dimension. In: Chen, J., Fomin, F. (eds.) Parameterized and Exact Computation, Lecture Notes in Computer Science, vol. 5917, pp. 198–209. Springer, Berlin (2009)

  14. Giannopoulos, P., Knauer, C., Rote, G., Werner, D.: Fixed-parameter tractability and lower bounds for stabbing problems. Comput. Geom. 46(7), 839–860 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  15. Gritzmann, P., Klee, V.: Inner and outer j-radii of convex bodies in finite-dimensional normed spaces. Discrete Comput. Geom. 7(1), 255–280 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  16. Gritzmann, P., Klee, V.: Computational complexity of inner and outer \(j\)-radii of polytopes in finite-dimensional normed spaces. Math. Program. 59(1), 163–213 (1993)

    Article  MATH  MathSciNet  Google Scholar 

  17. Gritzmann, P., Klee, V.: Computational Convexity. In: Goodman, J.E., O’Rourke, J. (eds.) Handbook of Discrete and Computational Geometry, pp. 491–515. CRC Press, Boca Raton (1997)

    Google Scholar 

  18. Gritzmann, P., Habsieger, L., Klee, V.: Good and bad radii of convex polygons. SIAM J. Comput. 20(2), 395–403 (1991)

    Article  MATH  MathSciNet  Google Scholar 

  19. Impagliazzo, R., Paturi, R.: On the complexity of \(k\)-SAT. J. Comput. Syst. Sci. 62(2), 367–375 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  20. Knauer, C.: The complexity of geometric problems in high dimension. In: Kratochvíl, J., Li, A., Fiala, J., Kolman, P. (eds.) Theory and Applications of Models of Computation, Lecture Notes in Computer Science, vol. 6108, pp. 40–49. Springer, Berlin (2010)

  21. Lokshtanov, D., Marx, D., Saurabh, S.: Lower bounds based on the exponential time hypothesis. Bull. EATCS 3(105), 41–71 (2013)

    MathSciNet  Google Scholar 

  22. Mangasarian, O.L., Shiau, T.-H.: A variable-complexity norm maximization problem. SIAM J. Algebr. Discrete Methods 7(3), 455–461 (1986)

    Article  MATH  MathSciNet  Google Scholar 

  23. Megiddo, N.: Linear programming in linear time when the dimension is fixed. J. ACM 31(1), 114–127 (1984)

    Article  MATH  MathSciNet  Google Scholar 

  24. Niedermeier, R.: Invitation to Fixed-Parameter Algorithms. Oxford Lecture Series in Mathematics and Its Applications. Oxford University Press, Oxford (2006)

  25. Papadimitriou, C.H.: Computational Complexity. Wiley, New York (1993)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stefan König.

Additional information

Communicated by Editor in charge: Günter M. Ziegler.

This work was initiated during the 10th INRIA-McGill workshop on Computational Geometry.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Knauer, C., König, S. & Werner, D. Fixed-Parameter Complexity and Approximability of Norm Maximization. Discrete Comput Geom 53, 276–295 (2015). https://doi.org/10.1007/s00454-015-9667-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00454-015-9667-0

Keywords

Navigation