Skip to main content
Log in

Extended MSO Model Checking via Small Vertex Integrity

  • Published:
Algorithmica Aims and scope Submit manuscript

Abstract

We study the model checking problem of an extended \(\textsf{MSO}\) with local and global cardinality constraints, called \(\textsf{MSO}^{\textsf{GL}}_{\textsf{Lin}}\), introduced recently by Knop et al. (Log Methods Comput Sci, 15(4), 2019. https://doi.org/10.23638/LMCS-15(4:12)2019). We show that the problem is fixed-parameter tractable parameterized by vertex integrity, where vertex integrity is a graph parameter standing between vertex cover number and treedepth. Our result thus narrows the gap between the fixed-parameter tractability parameterized by vertex cover number and the W[1]-hardness parameterized by treedepth.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Notes

  1. We assume that the readers are familiar with the concept of parameterized complexity. For standard definitions, see e.g., [16].

  2. In Ref. [20], Equitable Connected Partition was shown to be W[1]-hard parameterized simultaneously by pathwidth, feedback vertex set number, and the number of parts. In Sect. 6, we strengthen the W[1]-hardness by replacing pathwidth in the parameter with treedepth.

  3. The \(\textsf{MSO}_{2}\) logic is also known as the \(\textsf{GSO}\) logic, which stands for guarded second-order logic.

  4. To be more precise, we color the vertices in W with a new color to distinguish them from the original vertices.

  5. The parameter in [33] is a generalization of vertex integrity.

  6. In Sect. 6, we strengthen the hardness result by replacing this part with treedepth.

References

  1. Arnborg, S., Lagergren, J., Seese, D.: Easy problems for tree-decomposable graphs. J. Algorithms 12(2), 308–340 (1991). https://doi.org/10.1016/0196-6774(91)90006-K

    Article  MathSciNet  Google Scholar 

  2. Barefoot, C.A., Entringer, R.C., Swart, H.C.: Vulnerability in graphs – a comparative survey. J. Combin. Math. Combin. Comput. 1, 13–22 (1987)

    MathSciNet  Google Scholar 

  3. Belmonte, R., Jung Kim, E., Lampis, M., Mitsou, V., Otachi, Y.: Grundy distinguishes treewidth from pathwidth. In: ESA 2020, volume 173 of LIPIcs, pp. 14:1–14:19 (2020). https://doi.org/10.4230/LIPIcs.ESA.2020.14

  4. Belmonte, R., Lampis, M., Mitsou, V.: Parameterized (approximate) defective coloring. SIAM J. Discret. Math. 34(2), 1084–1106 (2020). https://doi.org/10.1137/18M1223666

    Article  MathSciNet  Google Scholar 

  5. Bliem, B., Woltran, S.: Defensive alliances in graphs of bounded treewidth. Discret. Appl. Math. 251, 334–339 (2018). https://doi.org/10.1016/j.dam.2018.04.001

    Article  MathSciNet  Google Scholar 

  6. Bodlaender, H.L.: A partial \(k\)-arboretum of graphs with bounded treewidth. Theor. Comput. Sci. 209(1–2), 1–45 (1998). https://doi.org/10.1016/S0304-3975(97)00228-4

    Article  MathSciNet  Google Scholar 

  7. Bodlaender, H.L., Hanaka, T., Kobayashi, Y., Kobayashi, Y., Okamoto, Y., Otachi, Y., van der Zanden, T.C.: Subgraph isomorphism on graph classes that exclude a substructure. Algorithmica 82(12), 3566–3587 (2020). https://doi.org/10.1007/s00453-020-00737-z

    Article  MathSciNet  Google Scholar 

  8. Borie, R.B., Gary Parker, R., Tovey, C.A.: Automatic generation of linear-time algorithms from predicate calculus descriptions of problems on recursively constructed graph families. Algorithmica 7(5 &6), 555–581 (1992). https://doi.org/10.1007/BF01758777

    Article  MathSciNet  Google Scholar 

  9. Bulteaum, L., Dabrowski, L.K., Köhler, N., Ordyniak, S., Paulusma, D.: An algorithmic framework for locally constrained homomorphisms. CoRR abs/2201.11731 (2022). arXiv:2201.11731

  10. Cami, A., Balakrishnan, H., Deo, N., Dutton, R.D.: On the complexity of finding optimal global alliances. J. Combin. Math. Combin. Comput. 58, 23–31 (2006)

    MathSciNet  Google Scholar 

  11. Courcelle, B.: The monadic second-order logic of graphs. I. Recognizable sets of finite graphs. Inf. Comput. 85(1), 12–75 (1990). https://doi.org/10.1016/0890-5401(90)90043-H

    Article  MathSciNet  Google Scholar 

  12. Courcelle, B.: The monadic second-order logic of graphs III: tree-decompositions, minor and complexity issues. RAIRO Theor. Inform. Appl. 26, 257–286 (1992). https://doi.org/10.1051/ita/1992260302571

    Article  MathSciNet  Google Scholar 

  13. Courcelle, B., Engelfriet, J.: Graph structure and monadic second-order logic—a language-theoretic approach. Cambridge University Press (2012)

    Book  Google Scholar 

  14. Courcelle, B., Makowsky, J.A., Rotics, U.: Linear time solvable optimization problems on graphs of bounded clique-width. Theory Comput. Syst. 33(2), 125–150 (2000). https://doi.org/10.1007/s002249910009

    Article  MathSciNet  Google Scholar 

  15. Cowen, L.J., Cowen, R., Woodall, D.R.: Defective colorings of graphs in surfaces: partitions into subgraphs of bounded valency. J. Graph Theory 10(2), 187–195 (1986). https://doi.org/10.1002/jgt.3190100207

    Article  MathSciNet  Google Scholar 

  16. Cygan, M., Fomin, F.V., Kowalik, Ł, Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized algorithms. Springer (2015)

    Book  Google Scholar 

  17. Dom, M., Lokshtanov, D., Saurabh, S., Villanger, Y.: Capacitated domination and covering: a parameterized perspective. In: IWPEC 2008, volume 5018 of Lecture Notes in Computer Science, pp. 78–90. Springer, (2008). https://doi.org/10.1007/978-3-540-79723-4_9

  18. Drange, P.G., Dregi, M.S., Hof, P.: On the computational complexity of vertex integrity and component order connectivity. Algorithmica 76(4), 1181–1202 (2016). https://doi.org/10.1007/s00453-016-0127-x

    Article  MathSciNet  Google Scholar 

  19. Dvořák, P., Eiben, E., Ganian, R., Knop, D., Ordyniak, S.: Solving integer linear programs with a small number of global variables and constraints. In: IJCAI vol. 2017, pp. 607–613 (2017). https://doi.org/10.24963/ijcai.2017/85

  20. Enciso, R., Fellows, M.R., Guo, J., Kanj, I.A., Rosamond, F.A., Suchý, O.: What makes equitable connected partition easy. In: IWPEC 2009, volume 5917 of Lecture Notes in Computer Science, pp. 122–133, (2009). https://doi.org/10.1007/978-3-642-11269-0_10

  21. Fellows, M.R., Fomin, F.V., Lokshtanov, D., Rosamond, F.A., Saurabh, S., Szeider, S., Thomassen, C.: On the complexity of some colorful problems parameterized by treewidth. Inf. Comput. 209(2), 143–153 (2011). https://doi.org/10.1016/j.ic.2010.11.026

    Article  MathSciNet  Google Scholar 

  22. Fellows, M.R., Lokshtanov, D., Misra, N., Rosamond, F.A., Saurabh, S.: Graph layout problems parameterized by vertex cover. In: ISAAC 2008, volume 5369 of Lecture Notes in Computer Science, pp. 294–305 (2008). https://doi.org/10.1007/978-3-540-92182-0_28

  23. Fernau, H., Rodríguez-Velázquez, J.A.: A survey on alliances and related parameters in graphs. Electron. J. Graph Theory Appl. 2(1), 70–86 (2014). https://doi.org/10.5614/ejgta.2014.2.1.7

    Article  MathSciNet  Google Scholar 

  24. Fiala, J., Golovach, P.A., Kratochvíl, J.: Parameterized complexity of coloring problems: Treewidth versus vertex cover. Theor. Comput. Sci. 412(23), 2513–2523 (2011). https://doi.org/10.1016/j.tcs.2010.10.043

    Article  MathSciNet  Google Scholar 

  25. Frank, A., Tardos, É.: An application of simultaneous diophantine approximation in combinatorial optimization. Combinatorica 7, 49–65 (1987). https://doi.org/10.1007/BF02579200

    Article  MathSciNet  Google Scholar 

  26. Frick, M., Grohe, M.: The complexity of first-order and monadic second-order logic revisited. Ann. Pure Appl. Log. 130(1–3), 3–31 (2004). https://doi.org/10.1016/j.apal.2004.01.007

    Article  MathSciNet  Google Scholar 

  27. Fricke, G.H., Lawson, L.M., Haynes, T.W., Hedetniemi, S.M., Hedetniemi, S.T.: A note on defensive alliances in graphs. Bull. Inst. Combin. Appl. 38, 37–41 (2003)

    MathSciNet  Google Scholar 

  28. Fujita, S., Furuya, M.: Safe number and integrity of graphs. Discret. Appl. Math. 247, 398–406 (2018). https://doi.org/10.1016/j.dam.2018.03.074

    Article  MathSciNet  Google Scholar 

  29. Fujita, S., MacGillivray, G., Sakuma, T.: Safe set problem on graphs. Discret. Appl. Math. 215, 106–111 (2016). https://doi.org/10.1016/j.dam.2016.07.020

    Article  MathSciNet  Google Scholar 

  30. Gajarský, J., Hliněný, P.: Kernelizing MSO properties of trees of fixed height, and some consequences. Log. Methods Comput. Sci. 11(1), (2015). https://doi.org/10.2168/LMCS-11(1:19)2015

  31. Ganian, R.: Twin-cover: beyond vertex cover in parameterized algorithmics. In: IPEC 2011, volume 7112 of Lecture Notes in Computer Science, pp. 259–271 (2011). https://doi.org/10.1007/978-3-642-28050-4_21

  32. Ganian, R., Hlinený, P., Nesetril, J., Obdrzálek, J., de Mendez, P.O., Ramadurai, R.: When trees grow low: Shrubs and fast MSO1. In: MFCS 2012, volume 7464 of Lecture Notes in Computer Science, pp. 419–430 (2012). https://doi.org/10.1007/978-3-642-32589-2_38

  33. Ganian, R., Klute, F., Ordyniak, S.: On structural parameterizations of the bounded-degree vertex deletion problem. Algorithmica 83(1), 297–336 (2021). https://doi.org/10.1007/s00453-020-00758-8

    Article  MathSciNet  Google Scholar 

  34. Ganian, R., Obdržálek, J.: Expanding the expressive power of monadic second-order logic on restricted graph classes. In: IWOCA 2013, volume 8288 of Lecture Notes in Computer Science, pp. 164–177 (2013). https://doi.org/10.1007/978-3-642-45278-9_15

  35. Gima, T., Hanaka, T., Kiyomi, M., Kobayashi, Y., Otachi, Y.: Exploring the gap between treedepth and vertex cover through vertex integrity. In: CIAC 2021, volume 12701 of Lecture Notes in Computer Science, pp. 271–285, (2021). https://doi.org/10.1007/978-3-030-75242-2_19

  36. Grohe, M., Kreutzer, S.: Methods for algorithmic meta theorems. In: Model theoretic methods in finite combinatorics, volume 558 of contemporary mathematics, pp. 181–206 (2009)

  37. Hliněný, P., Oum, S., Seese, D., Gottlob, G.: Width parameters beyond tree-width and their applications. Comput. J. 51(3), 326–362 (2008). https://doi.org/10.1093/comjnl/bxm052

    Article  Google Scholar 

  38. Jansen, B.M., Marx, D.: Characterizing the easy-to-find subgraphs from the viewpoint of polynomial-time algorithms, kernels, and Turing kernels. In: SODA 2015, pp. 616–629 (2015). https://doi.org/10.1137/1.9781611973730.42

  39. Jansen, K., Kratsch, S., Marx, D., Schlotter, I.: Bin packing with fixed number of bins revisited. J. Comput. Syst. Sci. 79(1), 39–49 (2013). https://doi.org/10.1016/j.jcss.2012.04.004

    Article  MathSciNet  Google Scholar 

  40. Kannan, R.: Minkowski’s convex body theorem and integer programming. Math. Oper. Res. 12, 415–440 (1987). https://doi.org/10.1287/moor.12.3.415

    Article  MathSciNet  Google Scholar 

  41. Knop, D., Masarík, T., Toufar, T.: Parameterized complexity of fair vertex evaluation problems. In: MFCS 2019, volume 138 of LIPIcs, pp. 33:1–33:16 (2019). https://doi.org/10.4230/LIPIcs.MFCS.2019.33

  42. Knop, D., Koutecký, M., Masařík, T., Toufar, T.: Simplified algorithmic metatheorems beyond MSO: treewidth and neighborhood diversity. Log. Methods Comput. Sci. (2019)

  43. Kreutzer, S.: Algorithmic meta-theorems. In: Esparza, J., Michaux, C., Steinhorn, C., (eds), Finite and algorithmic model theory, volume 379 of London mathematical society lecture note series, pp. 177–270. (2011). https://doi.org/10.1017/cbo9780511974960.006

  44. Kristiansen, P., Hedetniemi, S.M., Hedetniemi, S.T.: Alliances in graphs. J. Combin. Math. Combin. Comput. 48, 157–177 (2004)

    MathSciNet  Google Scholar 

  45. Lampis, M.: Algorithmic meta-theorems for restrictions of treewidth. Algorithmica 64(1), 19–37 (2012). https://doi.org/10.1007/s00453-011-9554-x

    Article  MathSciNet  Google Scholar 

  46. Lampis, M., Mitsou, V.: Fine-grained meta-theorems for vertex integrity. In: ISAAC 2021, volume 212 of LIPIcs, pp. 34:1–34:15 (2021). https://doi.org/10.4230/LIPIcs.ISAAC.2021.34

  47. Lenstra, H.W., Jr.: Integer programming with a fixed number of variables. Math. Oper. Res. 8(4), 538–548 (1983). https://doi.org/10.1287/moor.8.4.538

    Article  MathSciNet  Google Scholar 

  48. Lin, L.-S., Sahni, S.: Fair edge deletion problems. IEEE Trans. Comput. 38(5), 756–761 (1989). https://doi.org/10.1109/12.24280

    Article  MathSciNet  Google Scholar 

  49. Masařík, T., Toufar, T.: Parameterized complexity of fair deletion problems. Discret. Appl. Math. 278, 51–61 (2020). https://doi.org/10.1016/j.dam.2019.06.001

    Article  MathSciNet  Google Scholar 

  50. Szeider, S.: Not so easy problems for tree decomposable graphs. Ramanujan Math. Soc. 13, 179–190 (2010). arXiv:1107.1177

    MathSciNet  Google Scholar 

  51. Szeider, S.: Monadic second order logic on graphs with local cardinality constraints. ACM Trans. Comput. Log. 12(2), 12:1-12:21 (2011). https://doi.org/10.1145/1877714.1877718

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

The authors thank Michael Lampis and Valia Mitsou for fruitful discussions and sharing a preliminary version of Ref. [46].

Funding

This work was partially supported by JSPS KAKENHI Grant Numbers JP18H04091, JP18K11168, JP18K11169, JP20H05793, JP21K11752, JP22H00513.

Author information

Authors and Affiliations

Authors

Contributions

TG and YO wrote the main manuscript text.

Corresponding author

Correspondence to Tatsuya Gima.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Preliminary version. A preliminary version appeared in the proceedings of the 33rd International Symposium on Algorithms and Computation (ISAAC 2022), Leibniz International Proceedings in Informatics 248 (2022) 20:1–21:15.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gima, T., Otachi, Y. Extended MSO Model Checking via Small Vertex Integrity. Algorithmica 86, 147–170 (2024). https://doi.org/10.1007/s00453-023-01161-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00453-023-01161-9

Keywords

Navigation