Skip to main content
Log in

A Tight \((3/2+\varepsilon )\)-Approximation for Skewed Strip Packing

  • Published:
Algorithmica Aims and scope Submit manuscript

Abstract

In the Strip Packing problem, we are given a vertical half-strip \([0,W]\times [0,+\infty )\) and a collection of open rectangles of width at most W. Our goal is to find an axis-aligned (non-overlapping) packing of such rectangles into the strip such that the maximum height OPT spanned by the packing is as small as possible. It is NP-hard to approximate this problem within a factor \((3/2-\varepsilon )\) for any constant \(\varepsilon >0\) by a simple reduction from the Partition problem, while the current best approximation factor for it is \((5/3+\varepsilon )\). It seems plausible that Strip Packing admits a \((3/2+\varepsilon )\)-approximation. We make progress in that direction by achieving such tight approximation guarantees for a special family of instances, which we call skewed instances. As standard in the area, for a given constant parameter \(\delta >0\), we call large the rectangles with width at least \(\delta W\) and height at least \(\delta OPT\), and skewed the remaining rectangles. If all the rectangles in the input are large, then one can easily compute the optimal packing in polynomial time (since the input can contain only a constant number of rectangles). We consider the complementary case where all the rectangles are skewed. This second case retains a large part of the complexity of the original problem; in particular, the skewed case is still NP-hard to approximate within a factor \((3/2-\varepsilon )\), and we provide an (almost) tight \((3/2+\varepsilon )\)-approximation algorithm.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Notes

  1. Choosing \(\delta \) such that \(\delta W<1\) enforces each rectangle to have height at most \(\delta OPT\) (otherwise it would be large). A PTAS for this case follows, e.g., from [25].

  2. The same item might have different profit on different bins; however, we do not need this extension here.

  3. A shifting up by \(2\varepsilon OPT\) would be sufficient to achieve a contradiction here. The extra shift by \(9\varepsilon OPT\) is used to create some more free space that is needed in the following arguments.

References

  1. Adamaszek, A., Kociumaka, T., Pilipczuk, M., Pilipczuk, M.: Hardness of approximation for strip packing. ACM Trans. Comput. Theory 9(3), 14:1-14:7 (2017). https://doi.org/10.1145/3092026

    Article  MathSciNet  MATH  Google Scholar 

  2. Adamaszek, A., Wiese, A.: Approximation schemes for maximum weight independent set of rectangles. In: 54th Annual IEEE Symposium on Foundations of Computer Science (FOCS), pp. 400–409. IEEE Computer Society (2013). https://doi.org/10.1109/FOCS.2013.50

  3. Adamaszek, A., Wiese, A.: A quasi-ptas for the two-dimensional geometric knapsack problem. In: Proceedings of the Twenty-Sixth Annual ACM-SIAM Symposium on Discrete Algorithms (SODA), pp. 1491–1505. SIAM (2015). https://doi.org/10.1137/1.9781611973730.98

  4. Baker, B.S., Coffman, E.G., Jr., Rivest, R.L.: Orthogonal packings in two dimensions. SIAM J. Comput. 9(4), 846–855 (1980). https://doi.org/10.1137/0209064

    Article  MathSciNet  MATH  Google Scholar 

  5. Bansal, N., Caprara, A., Jansen, K., Prädel, L., Sviridenko, M.: A structural lemma in 2-dimensional packing, and its implications on approximability. In: Algorithms and Computation, 20th International Symposium (ISAAC), vol. 5878, pp. 77–86. Springer (2009). https://doi.org/10.1007/978-3-642-10631-6_10

  6. Bansal, N., Correa, J.R., Kenyon, C., Sviridenko, M.: Bin packing in multiple dimensions: inapproximability results and approximation schemes. Math. Oper. Res. 31(1), 31–49 (2006). https://doi.org/10.1287/moor.1050.0168

    Article  MathSciNet  MATH  Google Scholar 

  7. Bansal, N., Khan, A.: Improved approximation algorithm for two-dimensional bin packing. In: Proceedings of the Twenty-Fifth Annual ACM-SIAM Symposium on Discrete Algorithms (SODA), pp. 13–25. SIAM (2014). https://doi.org/10.1137/1.9781611973402.2

  8. Chalermsook, P., Chuzhoy, J.: Maximum independent set of rectangles. In: Proceedings of the Twentieth Annual ACM-SIAM Symposium on Discrete Algorithms (SODA), pp. 892–901. SIAM (2009). http://dl.acm.org/citation.cfm?id=1496770.1496867

  9. Chan, T.M., Har-Peled, S.: Approximation algorithms for maximum independent set of pseudo-disks. Discrete Comput. Geom. 48(2), 373–392 (2012). https://doi.org/10.1007/s00454-012-9417-5

    Article  MathSciNet  MATH  Google Scholar 

  10. Christensen, H.I., Khan, A., Pokutta, S., Tetali, P.: Approximation and online algorithms for multidimensional bin packing: a survey. Comput. Sci. Rev. 24, 63–79 (2017). https://doi.org/10.1016/j.cosrev.2016.12.001

    Article  MathSciNet  MATH  Google Scholar 

  11. Coffman, E.G., Bruno, J.L.: Computer and Job-Shop Scheduling Theory. Wiley, New York (1976)

    MATH  Google Scholar 

  12. Coffman, E.G., Jr., Csirik, J., Galambos, G., Martello, S., Vigo, D.: Bin Packing Approximation Algorithms: Survey and Classification, pp. 455–531. Springer, New York (2013). https://doi.org/10.1007/978-1-4419-7997-1_35

    Book  Google Scholar 

  13. Coffman, E.G., Jr., Garey, M.R., Johnson, D.S., Tarjan, R.E.: Performance bounds for level-oriented two-dimensional packing algorithms. SIAM J. Comput. 9(4), 808–826 (1980). https://doi.org/10.1137/0209062

    Article  MathSciNet  MATH  Google Scholar 

  14. Epstein, L., van Stee, R.: This side up! ACM Trans. Algorithms 2(2), 228–243 (2006). https://doi.org/10.1145/1150334.1150339

    Article  MathSciNet  MATH  Google Scholar 

  15. Garey, M.R., Johnson, D.S.: “strong’’ np-completeness results: motivation, examples, and implications. J. ACM 25(3), 499–508 (1978). https://doi.org/10.1145/322077.322090

    Article  MathSciNet  MATH  Google Scholar 

  16. Gálvez, W., Grandoni, F., Ingala, S., Heydrich, S., Khan, A., Wiese, A.: Approximating geometric knapsack via L-packings. ACM Trans. Algorithms 17(4), 33:1-33:67 (2021). https://doi.org/10.1145/3473713

    Article  MathSciNet  MATH  Google Scholar 

  17. Gálvez, W., Grandoni, F., Ingala, S., Khan, A.: Improved pseudo-polynomial-time approximation for strip packing. In: 36th IARCS Annual Conference on Foundations of Software Technology and Theoretical Computer Science (FSTTCS), vol. 65, pp. 9:1–9:14. Schloss Dagstuhl - Leibniz-Zentrum für Informatik (2016). https://doi.org/10.4230/LIPIcs.FSTTCS.2016.9

  18. Gálvez, W., Grandoni, F., Khan, A., Ramírez-Romero, D., Wiese, A.: Improved approximation algorithms for 2-dimensional knapsack: packing into multiple l-shapes, spirals, and more. In: 37th International Symposium on Computational Geometry (SoCG), vol. 189, pp. 39:1–39:17 (2021). https://doi.org/10.4230/LIPIcs.SoCG.2021.39

  19. Harren, R., Jansen, K., Prädel, L., van Stee, R.: A \((5/3 + \varepsilon )\)-approximation for strip packing. Comput. Geom. 47(2), 248–267 (2014). https://doi.org/10.1016/j.comgeo.2013.08.008

    Article  MathSciNet  MATH  Google Scholar 

  20. Harren, R., van Stee, R.: Improved absolute approximation ratios for two-dimensional packing problems. In: Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques, 12th International Workshop (APPROX/RANDOM), vol. 5687, pp. 177–189. Springer (2009). https://doi.org/10.1007/978-3-642-03685-9_14

  21. Henning, S., Jansen, K., Rau, M., Schmarje, L.: Complexity and inapproximability results for parallel task scheduling and strip packing. Theory Comput. Syst. 64(1), 120–140 (2020). https://doi.org/10.1007/s00224-019-09910-6

    Article  MathSciNet  MATH  Google Scholar 

  22. Jansen, K., Prädel, L.: A new asymptotic approximation algorithm for 3-dimensional strip packing. In: 40th International Conference on Current Trends in Theory and Practice of Computer Science (SOFSEM), vol. 8327, pp. 327–338. Springer (2014). https://doi.org/10.1007/978-3-319-04298-5_29

  23. Jansen, K., Rau, M.: Closing the gap for pseudo-polynomial strip packing. In: 27th Annual European Symposium on Algorithms (ESA), vol. 144, pp. 62:1–62:14. Schloss Dagstuhl - Leibniz-Zentrum für Informatik (2019). https://doi.org/10.4230/LIPIcs.ESA.2019.62

  24. Jansen, K., Rau, M.: Improved approximation for two dimensional strip packing with polynomial bounded width. Theor. Comput. Sci. 789, 34–49 (2019). https://doi.org/10.1016/j.tcs.2019.04.002

    Article  MathSciNet  MATH  Google Scholar 

  25. Jansen, K., Solis-Oba, R.: New approximability results for 2-dimensional packing problems. In: Mathematical Foundations of Computer Science, 32nd International Symposium (MFCS), vol. 4708, pp. 103–114. Springer (2007). https://doi.org/10.1007/978-3-540-74456-6_11

  26. Jansen, K., van Stee, R.: On strip packing with rotations. In: Proceedings of the 37th Annual ACM Symposium on Theory of Computing (STOC), pp. 755–761. ACM (2005). https://doi.org/10.1145/1060590.1060702

  27. Jansen, K., Zhang, G.: Maximizing the total profit of rectangles packed into a rectangle. Algorithmica 47(3), 323–342 (2007). https://doi.org/10.1007/s00453-006-0194-5

    Article  MathSciNet  MATH  Google Scholar 

  28. Karbasioun, M.M., Shaikhet, G., Kranakis, E., Lambadaris, I.: Power strip packing of malleable demands in smart grid. In: Proceedings of IEEE International Conference on Communications (ICC), pp. 4261–4265. IEEE (2013). https://doi.org/10.1109/ICC.2013.6655233

  29. Kenyon, C., Rémila, E.: A near-optimal solution to a two-dimensional cutting stock problem. Math. Oper. Res. 25(4), 645–656 (2000). https://doi.org/10.1287/moor.25.4.645.12118

    Article  MathSciNet  MATH  Google Scholar 

  30. Khan, A.: Approximation algorithms for multidimensional bin packing. Ph.D. thesis, Georgia Institute of Technology, Atlanta, GA, USA (2016). http://hdl.handle.net/1853/54371

  31. Khan, A., Maiti, A., Sharma, A., Wiese, A.: On guillotine separable packings for the two-dimensional geometric knapsack problem. In: 37th International Symposium on Computational Geometry (SoCG), vol. 189, pp. 48:1–48:17 (2021). https://doi.org/10.4230/LIPIcs.SoCG.2021.48

  32. Khan, A., Pittu, M.R.: On guillotine separability of squares and rectangles. In: Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2020), vol. 176, pp. 47:1–47:22. Schloss Dagstuhl - Leibniz-Zentrum für Informatik (2020). https://doi.org/10.4230/LIPIcs.APPROX/RANDOM.2020.47

  33. Leung, J.Y., Tam, T.W., Wong, C.S., Young, G.H., Chin, F.Y.L.: Packing squares into a square. J. Parallel Distrib. Comput. 10(3), 271–275 (1990). https://doi.org/10.1016/0743-7315(90)90019-L

    Article  MathSciNet  Google Scholar 

  34. Mitchell, J.S.B.: Approximating maximum independent set for rectangles in the plane. In: 62nd IEEE Annual Symposium on Foundations of Computer Science (FOCS), pp. 339–350 (2021). https://doi.org/10.1109/FOCS52979.2021.00042

  35. Miyazawa, F.K., Wakabayashi, Y.: Packing problems with orthogonal rotations. In: Theoretical Informatics, 6th Latin American Symposium (LATIN), vol. 2976, pp. 359–368. Springer (2004). https://doi.org/10.1007/978-3-540-24698-5_40

  36. Nadiradze, G., Wiese, A.: On approximating strip packing with a better ratio than 3/2. In: Proceedings of the Twenty-Seventh Annual ACM-SIAM Symposium on Discrete Algorithms (SODA), pp. 1491–1510. SIAM (2016). https://doi.org/10.1137/1.9781611974331.ch102

  37. Schiermeyer, I.: Reverse-fit: A 2-optimal algorithm for packing rectangles. In: Algorithms, Second Annual European Symposium (ESA), vol. 855, pp. 290–299. Springer (1994). https://doi.org/10.1007/BFb0049416

  38. Sleator, D.D.: A 2.5 times optimal algorithm for packing in two dimensions. Inf. Process. Lett. 10(1), 37–40 (1980). https://doi.org/10.1016/0020-0190(80)90121-0

    Article  MathSciNet  MATH  Google Scholar 

  39. Steinberg, A.: A strip-packing algorithm with absolute performance bound 2. SIAM J. Comput. 26(2), 401–409 (1997). https://doi.org/10.1137/S0097539793255801

    Article  MathSciNet  MATH  Google Scholar 

  40. Tang, S., Huang, Q., Li, X., Wu, D.: Smoothing the energy consumption: peak demand reduction in smart grid. In: 32nd IEEE International Conference on Computer Communications (INFOCOM), pp. 1133–1141. IEEE (2013). https://doi.org/10.1109/INFCOM.2013.6566904

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Waldo Gálvez.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

A preliminary version of this paper appeared in the 23rd International Conference on Approximation Algorithms for Combinatorial Optimization Problems (APPROX 2020).

Waldo Gálvez is supported by ANID via Subvención a la Instalación Académica, Folio 85220118. Fabrizio Grandoni and Afrouz Jabal Ameli are partially supported by the SNSF Excellence Grant 200020B_182865/1.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gálvez, W., Grandoni, F., Ameli, A.J. et al. A Tight \((3/2+\varepsilon )\)-Approximation for Skewed Strip Packing. Algorithmica 85, 3088–3109 (2023). https://doi.org/10.1007/s00453-023-01130-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00453-023-01130-2

Keywords

Navigation