Skip to main content
Log in

A Cubic Vertex-Kernel for Trivially Perfect Editing

  • Published:
Algorithmica Aims and scope Submit manuscript

Abstract

We consider the Trivially Perfect Editing problem, where one is given an undirected graph \(G = (V,E)\) and a parameter \(k \in {\mathbb {N}}\) and seeks to edit (add or delete) at most k edges from G to obtain a trivially perfect graph. The related Trivially Perfect Completion and Trivially Perfect Deletion problems are obtained by only allowing edge additions or edge deletions, respectively. Trivially perfect graphs are both chordal and cographs, and have applications related to the tree-depth width parameter and to social network analysis. All variants of the problem are known to be NP-complete (Burzyn et al., in Discret Appl Math 154(13):1824–1844, 2006; Nastos and Gao, in Soc Netw 35(3):439–450, 2013) and to admit so-called polynomial kernels (Drange and Pilipczuk, in Algorithmica 80(12):3481–3524, 2018; Guo, in: Tokuyama, (ed) Algorithms and Computation, 18th International Symposium, ISAAC. Lecture Notes in Computer Science, Springer, Sendai, 2007. https://doi.org/10.1007/978-3-540-77120-3_79; Bathie et al., in Algorithmica 1–27, 2022). More precisely, Drange and Pilipczuk (Algorithmica 80(12):3481–3524, 2018) provided \(O(k^7)\) vertex-kernels for these problems and left open the existence of cubic vertex-kernels. In this work, we answer positively to this question for all three variants of the problem. Notice that a quadratic vertex-kernel was recently obtained for Trivially Perfect Completion by Bathie et al. (Algorithmica 1–27, 2022).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Aravind, N., Sandeep, R., Sivadasan, N.: Dichotomy results on the hardness of H-free edge modification problems. SIAM J. Discret. Math. 31(1), 542–561 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  2. Bathie, G., Bousquet, N., Cao, Y., Ke, Y., Pierron, T.: (Sub) linear kernels for edge modification problems toward structured graph classes. Algorithmica 1–27 (2022)

  3. Bessy, S., Paul, C., Perez, A.: Polynomial kernels for 3-leaf power graph modification problems. Discret. Appl. Math. 158(16), 1732–1744 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  4. Bessy, S., Perez, A.: Polynomial kernels for proper interval completion and related problems. Inf. Comput. 231, 89–108 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  5. Bliznets, I., Fomin, F.V., Pilipczuk, M., Pilipczuk, M.: A subexponential parameterized algorithm for proper interval completion. SIAM J. Discret. Math. 29(4), 1961–1987 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  6. Burzyn, P., Bonomo, F., Durán, G.: NP-completeness results for edge modification problems. Discrete Appl. Math. 154(13), 1824–1844 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  7. Cai, L.: Fixed-parameter tractability of graph modification problems for hereditary properties. Inf. Process. Lett. 58(4), 171–176 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  8. Cai, L., Cai, Y.: Incompressibility of \(H\)-free edge modification problems. Algorithmica 71(3), 731–757 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  9. Cao, Y., Marx, D.: Chordal editing is fixed-parameter tractable. Algorithmica 75(1), 118–137 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  10. Crespelle, C., Drange, P.G., Fomin, F.V., Golovach, P.A.: A survey of parameterized algorithms and the complexity of edge modification (2020). arXiv:2001.06867

  11. Drange, P.G., Pilipczuk, M.: A polynomial kernel for trivially perfect editing. Algorithmica 80(12), 3481–3524 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  12. Drange, P.G., Fomin, F.V., Pilipczuk, M., Villanger, Y.: Exploring the subexponential complexity of completion problems. ACM Trans. Comput. Theory (TOCT) 7(4), 1–38 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  13. El-Mallah, E.S., Colbourn, C.J.: The complexity of some edge deletion problems. IEEE Trans. Circuits Syst. 35(3), 354–362 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  14. Fomin, F.V., Lokshtanov, D., Saurabh, S., Zehavi, M.: Kernelization: Theory of Parameterized Preprocessing. Cambridge University Press, Cambridge (2019)

    MATH  Google Scholar 

  15. Fomin, F.V., Villanger, Y.: Subexponential parameterized algorithm for minimum fill-in. SIAM J. Comput. 42(6), 2197–2216 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  16. Fomin, F.V., Lokshtanov, D., Misra, N., Saurabh, S.: Planar f-deletion: Approximation, kernelization and optimal FPT algorithms. In: 53rd Annual IEEE Symposium on Foundations of Computer Science, FOCS, pp. 470–479. IEEE Computer Society, New Brunswick, NJ, USA (2012). https://doi.org/10.1109/FOCS.2012.62

  17. Ghosh, E., Kolay, S., Kumar, M., Misra, P., Panolan, F., Rai, A., Ramanujan, M.: Faster parameterized algorithms for deletion to split graphs. Algorithmica 71(4), 989–1006 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  18. Golumbic, M.C., Kaplan, H., Shamir, R.: On the complexity of DNA physical mapping. Adv. Appl. Math. 15(3), 251–261 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  19. Golumbic, M.C.: Trivially perfect graphs. Discret. Math. 24(1), 105–107 (1978)

    Article  MathSciNet  MATH  Google Scholar 

  20. Guillemot, S., Havet, F., Paul, C., Perez, A.: On the (non-)existence of polynomial kernels for P\(_l\)-free edge modification problems. Algorithmica 65(4), 900–926 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  21. Guo, J.: Problem kernels for NP-Complete edge deletion problems: split and related graphs. In: Tokuyama, T. (ed.) Algorithms and Computation, 18th International Symposium, ISAAC. Lecture Notes in Computer Science, vol. 4835, pp. 915–926. Springer, Sendai (2007). https://doi.org/10.1007/978-3-540-77120-3_79

  22. Hell, P., Shamir, R., Sharan, R.: A fully dynamic algorithm for recognizing and representing proper interval graphs. SIAM J. Comput. 31(1), 289–305 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  23. Kaplan, H., Shamir, R., Tarjan, R.E.: Tractability of parameterized completion problems on chordal, strongly chordal, and proper interval graphs. SIAM J. Comput. 28(5), 1906–1922 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  24. Kratsch, S., Wahlström, M.: Two edge modification problems without polynomial kernels. Discret. Optim. 10(3), 193–199 (2013). https://doi.org/10.1016/j.disopt.2013.02.001

    Article  MathSciNet  MATH  Google Scholar 

  25. Liu, Y., Wang, J., Guo, J.: An overview of kernelization algorithms for graph modification problems. Tsinghua Sci. Technol. 19(4), 346–357 (2014)

    Article  MathSciNet  Google Scholar 

  26. Marx, D., Sandeep, R.: Incompressibility of h-free edge modification problems: towards a dichotomy. J. Comput. Syst. Sci. 125, 25–58 (2022)

    Article  MathSciNet  MATH  Google Scholar 

  27. Nastos, J., Gao, Y.: Familial groups in social networks. Soc. Netw. 35(3), 439–450 (2013)

    Article  Google Scholar 

  28. Nešetřil, J., De Mendez, P.O.: On low tree-depth decompositions. Graphs Comb. 31(6), 1941–1963 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  29. Protti, F., Da Silva, M.D., Szwarcfiter, J.L.: Applying modular decomposition to parameterized cluster editing problems. Theory of Comput. Syst. 44(1), 91–104 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  30. Yannakakis, M.: Computing the minimum fill-in is NP-complete. SIAM J. Algebr. Discret. Methods 2(1), 77–79 (1981)

    Article  MathSciNet  MATH  Google Scholar 

  31. Yan, J.-H., Chen, J.-J., Chang, G.J.: Quasi-threshold graphs. Discret. Appl. Math. 69(3), 247–255 (1996)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anthony Perez.

Ethics declarations

Conflict of interest

The authors have no competing financial or non-financial interests to declare.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

An extended abstract of this work appeared in MFCS’20. https://doi.org/10.4230/LIPIcs.MFCS.2021.45.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dumas, M., Perez, A. & Todinca, I. A Cubic Vertex-Kernel for Trivially Perfect Editing. Algorithmica 85, 1091–1110 (2023). https://doi.org/10.1007/s00453-022-01070-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00453-022-01070-3

Keywords

Navigation