Skip to main content
Log in

Empty Squares in Arbitrary Orientation Among Points

  • Published:
Algorithmica Aims and scope Submit manuscript

Abstract

This paper studies empty squares in arbitrary orientation among a set P of n points in the plane. We prove that the number of empty squares with four contact pairs is between \(\Omega (n)\) and \(O(n^2)\), and that these bounds are tight, provided P is in general position. A contact pair of a square is a pair of a point \(p\in P\) and a side \(\ell \) of the square with \(p\in \ell \). The upper bound \(O(n^2)\) also applies to the number of empty squares with four contact points. Meanwhile, the lower bound becomes 0 as we can construct a point set among which there is no square of four contact points. These combinatorial results are based on new observations on the \(L_\infty \) Voronoi diagram with the axes rotated and its close connection to empty squares in arbitrary orientation. We then present an algorithm that maintains a combinatorial structure of the \(L_\infty \) Voronoi diagram of P, while the axes of the plane continuously rotate by 90 degrees, and simultaneously reports all empty squares with four contact pairs among P in an output-sensitive way within \(O(s\log n)\) time and O(n) space, where s denotes the number of reported squares. Several new algorithmic results are also obtained: a largest empty square among P and a square annulus of minimum width or minimum area that encloses P over all orientations can be computed in worst-case \(O(n^2 \log n)\) time.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Abellanas, M., Hurtado, F., Icking, C., Ma, L., Palop, B., Ramos, P.A.: Best fitting rectangles. Fernuniv. Fachbereich Informatik (2004)

  2. Agarwal, P.K., Kaplan, H., Rubin, N., Sharir, M.: Kinetic voronoi diagrams and delaunay triangulations under polygonal distance functions. Discrete Comput. Geom. 54(4), 871–904 (2015)

    MATH  Google Scholar 

  3. Aggarwal, A., Klawe, M., Moran, S., Shor, P., Wilber, R.: Geometric applications of a matrix-searching algorithm. Alogorithmica 2, 195–208 (1987)

    MATH  Google Scholar 

  4. Aggarwal, A., Suri, S.: Fast algorithm for computing the largest empty rectangle. In: Proc. 3rd ACM Sympos. Comput. Geom. (SoCG 1987), pp. 278–290 (1987)

  5. Alegría-Galicia, C., Orden, D., Seara, C., Urrutia, J.: On the \(O\beta \)-hull of a planar point set. Comput. Geom.: Theory Appl. 68, 277–291 (2018)

    MATH  Google Scholar 

  6. Augustine, J., Das, S., Maheshwari, A., Nandy, S., Roy, S., Sarvattomananda, S.: Querying for the largest empty geometric object in a desired location. CoRR arxiv:abs/1004.0558 (2010)

  7. Bae, S.W.: Computing a minimum-width square annulus in arbitrary orientation. Theoret. Comput. Sci. 718, 2–13 (2018)

    MATH  Google Scholar 

  8. Bae, S.W.: On the minimum-area rectangular and square annulus problem. Comput. Geom.: Theory Appl. 92, 101697 (2021)

    MATH  Google Scholar 

  9. Bae, S.W., Lee, C., Ahn, H., Choi, S., Chwa, K.: Computing minimum-area rectilinear convex hull and L-shape. Comput. Geom.: Theory Appl. 42(9), 903–912 (2009)

    MATH  Google Scholar 

  10. Bae, S.W., Yoon, S.D.: Empty Squares in Arbitrary Orientation Among Points. In: Proc. 36th International Sympos. Comput. Geom. (SoCG 2020), pp. 13:1–13:17 (2020)

  11. Bárány, I., Füredi, Z.: Empty simplices in Euclidean space. Canad. Math. Bull. 30, 436–445 (1987)

    MATH  Google Scholar 

  12. Bárány, I., Valtr, P.: A positive fraction Erdős-Szekeres theorem. Discrete Comput. Geom. 19(3), 335–342 (1998)

    MATH  Google Scholar 

  13. Bárány, I., Valtr, P.: Planar point sets with a small number of empty convex polygons. Studia Sci. Math. Hungar. 41, 243–269 (2005)

    MATH  Google Scholar 

  14. Berg, Md., Cheong, O., Kreveld, Mv., Overmars, M.: Computational Geometry: Algorithms and Applications, 3rd edn. Springer-Verlag TELOS, Berlin (2008)

    MATH  Google Scholar 

  15. Boissonnat, J.-D., Sharir, M., Tagansky, B., Yvinec, M.: Voronoi diagrams in higher dimensions under certain polyhedral distance functions. Discrete Comput. Geom. 19(4), 485–519 (1998)

    MATH  Google Scholar 

  16. Boyce, J., Dobkin, D., Drysdale, R., Guibas, L.: Finding extreman polygons. SIAM J. Comput. 14, 134–147 (1985)

    MATH  Google Scholar 

  17. Chaudhuri, J., Nandy, S.C., Das, S.: Largest empty rectangle among a point set. J. Algo. 46, 54–78 (2003)

    MATH  Google Scholar 

  18. Chazelle, B., Drysdale, R., Lee, D.: Computing the largest empty rectangle. SIAM J. Comput. 15, 300–315 (1986)

    MATH  Google Scholar 

  19. Chew, L., Kedem, K.: A convex polygon among polygonal obstacles: placement and high-clearance motion. Comput. Geom.: Theory Appl. 3(2), 59–89 (1993)

    MATH  Google Scholar 

  20. Cormen, T.H., Leiserson, C.E., Rivest, R.L., Stein, C.: Introduction to Algorithms, 2nd edn. MIT Press, United States (2001)

    MATH  Google Scholar 

  21. Dobkin, D.P., Edelsbrunner, H., Overmars, M.H.: Searching for empty convex polygons. Algorithmica 5(1), 561–571 (1990)

    MATH  Google Scholar 

  22. Driscoll, J.R., Sarnak, N., Sleator, D.D., Tarjan, R.E.: Making data structures persistent. J. Comput. Sys. Sci. 38(1), 86–124 (1989)

    MATH  Google Scholar 

  23. Drysdale, R., Jaromczyk, J.: A note on lower bounds for the maximum area and maximum perimeter \(k\)-gon problems. Inform. Proc. Lett. 32(6), 301–303 (1989)

    MATH  Google Scholar 

  24. Dumitrescu, A.: Planar sets with few empty convex polygons. Studia Sci. Math. Hungar. 36, 93–109 (2000)

    MATH  Google Scholar 

  25. Eppstein, D.: New algorithms for minimum area \(k\)-gons. In: Proc. 3rd Annu. ACM-SIAM Sympos. Discrete Algo. (SODA’92), pp. 83–88 (1992)

  26. Eppstein, D., Overmars, M., Rote, G., Woeginger, G.: Finding minimum area \(k\)-gons. Discrete Comput. Geom. 7(1), 45–58 (1992)

    MATH  Google Scholar 

  27. Erdős, P.: Some more problems on elementary geometry. Austral. Math. Soc. Gaz. 5, 52–54 (1978)

    MATH  Google Scholar 

  28. Erdős, P., Szekeres, G.: A combinatorial problem in geometry. Compositio Math. 2, 463–470 (1935)

    MATH  Google Scholar 

  29. Erdős, P., Szekeres, G.: On some extremum problems in elementary geometry. Ann. Univ. Sci. Budapest Eötvös Sect. Math., pp. 3–4:53–62 (1961)

  30. Gerken, T.: Empty convex hexagons in planar point sets. Discrete Comput. Geom. 39(1), 239–272 (2008)

    MATH  Google Scholar 

  31. Gluchshenko, O.N., Hamacher, H.W., Tamir, A.: An optimal \(O(n \log n)\) algorithm for finding an enclosing planar rectilinear annulus of minimum width. Operations Research Lett. 37(3), 168–170 (2009)

    MATH  Google Scholar 

  32. Harborth, H.: Konvexe Fünfecke in ebenen Punktmengen. Elem. Math. 33, 116–118 (1978)

    MATH  Google Scholar 

  33. Hershberger, J.: Finding the upper envelope of \(n\) line segments in \(O(n\log n)\) time. Inform. Proc. Lett. 33, 169–174 (1989)

    MATH  Google Scholar 

  34. Horton, J.: Sets with no empty convex 7-gons. Canad. Math. Bull. 26, 482–484 (1983)

    MATH  Google Scholar 

  35. Kaplan, H., Mozes, S., Nussbaum, Y., Sharir, M.: Submatrix maximum queries in monge matrices and partial monge matrices, and their applications. ACM Trans. Algo. 13(2), 1–42 (2017)

    MATH  Google Scholar 

  36. Lee, D.T.: Two-dimensional Voronoi diagrams in the \(L_p\)-metric. J. ACM 27, 604–618 (1980)

    MATH  Google Scholar 

  37. Lee, D.T., Wong, C.: Voronoui diagrams in \(L_1\)(\(L_\infty \)) metrics with 2-dimensional storage applications. SIAM J. Comput. 9, 200–211 (1980)

    Google Scholar 

  38. Mckenna, M., O’Rourke, J., Suri, S.: Finding the largest rectangle in an orthogonal polygon. In: Proc. 23rd Annual Allerton Conf. Comm. Control Comput. (1985)

  39. Mitchell, J., Rote, G., Sundaram, G., Woeginger, G.: Counting convex polygons in planar point sets. Inform. Proc. Lett. 56(1), 45–49 (1995)

    MATH  Google Scholar 

  40. Morris, W., Soltan, V.: The Erdős-Szekeres problem on points in convex position–a survey. Bull. Amer. Math. Soc. 33, 437–458 (2000)

    MATH  Google Scholar 

  41. Morris, W., Soltan, V.: The Erdős-Szekeres problem. In: Nash, J.F., Jr., Rassias, M.T. (eds.) Open Problems in Mathematics, pp. 351–375. Springer International Publishing, Cham (2016)

    Google Scholar 

  42. Naamad, A., Lee, D., Hsu, W.: On the maximum empty rectangle problem. Discrete Appl. Math. 8, 267–277 (1984)

    MATH  Google Scholar 

  43. Nicolás, C.M.: The empty hexagon theorem. Discrete Comput. Geom. 38(2), 389–397 (2007)

    MATH  Google Scholar 

  44. Orlowski, M.: A new algorithm for largest empty rectangle problem. Algorithmica 5, 65–73 (1990)

    MATH  Google Scholar 

  45. Pinchasi, R., Radoičić, R., Sharir, M.: On empty convex polygons in a planar point set. J. Combinat. Theory, Series A 113(3), 385–419 (2006)

    MATH  Google Scholar 

  46. Rote, G., Wang, Z., Woeginger, G., Zhi, B.: Counting \(k\)-subsets and convex \(k\)-gons in the plane. Inform. Proc. Lett. 38(4), 149–151 (1991)

    MATH  Google Scholar 

  47. Rote, G., Woeginger, G.: Counting convex \(k\)-gons in planar point sets. Inform. Proc. Lett. 41(4), 191–194 (1992)

    MATH  Google Scholar 

  48. Sharir, M., Agarwal, P.K.: Davenport-Schinzel Sequences and Their Geometric Applications. Cambridge University Press, New York (1995)

    MATH  Google Scholar 

  49. Szekeres, G., Peters, L.: Computer solution to the 17-point Erdős-Szekeres problem. ANZIAM J. 48(2), 151–164 (2006)

  50. Toussaint, G.: Solving geometric problems with the rotating calipers. In Proc. IEEE MELECON. (1983)

  51. Valtr, P.: On the minimum number of empty polygons in planar point sets. Studia Sci. Math. Hungar. 30, 155–163 (1995)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sang Duk Yoon.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

A preliminary version of this work was presented at the 36th International Symposium on Computational Geometry (SoCG 2020) [10]. S.W.Bae was supported by Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education (2018R1D1A1B07042755). S.D.Yoon was supported by the Sungshin Women’s University Research Grant of H20190003.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bae, S.W., Yoon, S.D. Empty Squares in Arbitrary Orientation Among Points. Algorithmica 85, 29–74 (2023). https://doi.org/10.1007/s00453-022-01002-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00453-022-01002-1

Keywords

Navigation