Skip to main content
Log in

Introducing lop-Kernels: A Framework for Kernelization Lower Bounds

  • Published:
Algorithmica Aims and scope Submit manuscript

Abstract

In the Maximum Minimal Vertex Cover (MMVC) problem, we are given a graph G and a positive integer k, and the objective is to decide whether G contains a minimal vertex cover of size at least k. Motivated by the kernelization of MMVC with parameter k, our main contribution is to introduce a simple general framework to obtain kernelization lower bounds for a certain type of kernels for optimization problems, which we call lop -kernels. Informally, this type of kernel is required to preserve large optimal solutions in the reduced instance, and captures the vast majority of existing kernels in the literature. As a consequence of this framework, we show that the trivial quadratic kernel for MMVC is essentially optimal, answering a question of Boria et al. Discrete Appl Math 196:62–71, 2015. https://doi.org/10.1016/j.dam.2014.06.001), and that the known cubic kernel for Maximum Minimal Feedback Vertex Set is also essentially optimal. We present further applications for Tree Deletion Set and for Maximum Independent Set on \(K_t\)-free graphs. Back to the MMVC problem, given the (plausible) non-existence of subquadratic kernels for MMVC on general graphs, we provide subquadratic kernels on H-free graphs for several graphs H, such as the bull, the paw, or the complete graphs, by making use of the Erdős–Hajnal property. Finally, we prove that MMVC does not admit polynomial kernels parameterized by the size of a minimum vertex cover of the input graph, even on bipartite graphs, unless \(\mathsf{NP} \subseteq \mathsf{coNP} / \mathsf{poly}\).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Notes

  1. This definition was used in the conference version of this paper [4].

References

  1. Abu-Khzam, F.N., Bazgan, C., Chopin, M., Fernau, H.: Approximation algorithms inspired by kernelization methods. In: Proceedings of the 25th International Symposium on Algorithms and Computation (ISAAC), volume 8889 of LNCS, pp. 479–490 (2014). https://doi.org/10.1007/978-3-319-13075-0_38

  2. Allan, R.B., Laskar, R.C.: On domination and independent domination numbers of a graph. Discrete Math. 23(2), 73–76 (1978). https://doi.org/10.1016/0012-365X(78)90105-X

    Article  MathSciNet  MATH  Google Scholar 

  3. Alon, N., Pach, J., Solymosi, J.: Ramsey-type theorems with forbidden subgraphs. Combinatorica 21(2), 155–170 (2001). https://doi.org/10.1007/s004930100016

    Article  MathSciNet  MATH  Google Scholar 

  4. Araújo, J., Bougeret, M., Campos, V., Sau, I.: A new framework for kernelization lower bounds: the case of maximum minimal vertex cover. In: Proceedings of the 16th International Symposium on Parameterized and Exact Computation (IPEC), volume 214 of LIPIcs, pp. 4:1–4:19 (2021). https://doi.org/10.4230/LIPIcs.IPEC.2021.4

  5. Araújo, J., Bougeret, M., Campos, V.A., Sau, I.: Parameterized complexity of computing maximum minimal blocking and hitting sets. Manuscript submitted for publication (2021). arXiv:2102.03404

  6. Arnborg, S., Lagergren, J., Seese, D.: Easy problems for tree-decomposable graphs. J. Algorithms 12(2), 308–340 (1991). https://doi.org/10.1016/0196-6774(91)90006-K

    Article  MathSciNet  MATH  Google Scholar 

  7. Bazgan, C., Brankovic, L., Casel, K., Fernau, H., Jansen, K., Klein, K.-M., Lampis, M., Liedloff, M., Monnot, J., Paschos, V.T.: The many facets of upper domination. Theoret. Comput. Sci. 717, 2–25 (2018). https://doi.org/10.1016/j.tcs.2017.05.042

    Article  MathSciNet  MATH  Google Scholar 

  8. Binkele-Raible, D., Fernau, H., Fomin, F.V., Lokshtanov, D., Saurabh, S., Villanger, Y.: Kernel(s) for problems with no kernel: on out-trees with many leaves. ACM Trans. Algorithms 8(4), 38:1-38:19 (2012). https://doi.org/10.1145/2344422.2344428

    Article  MathSciNet  MATH  Google Scholar 

  9. Biswas, A., Raman, V., Saurabh, S.: Approximation in (poly-)logarithmic space. In: Proceedings of of the 45th International Symposium on Mathematical Foundations of Computer Science (MFCS), volume 170 of LIPIcs, pp. 16:1–16:15 (2020). https://doi.org/10.4230/LIPIcs.MFCS.2020.16

  10. Bodlaender, H.L., Downey, R.G., Fellows, M.R., Hermelin, D.: On problems without polynomial kernels. J. Comput. Syst. Sci. 75(8), 423–434 (2009). https://doi.org/10.1016/j.jcss.2009.04.001

    Article  MathSciNet  MATH  Google Scholar 

  11. Bodlaender, H.L., Fomin, F.V., Lokshtanov, D., Penninkx, E., Saurabh, S., Thilikos, D.M.: (Meta) Kernelization. J. ACM 63(5), 44:1-44:69 (2016)

    Article  MathSciNet  Google Scholar 

  12. Bodlaender, H.L., Jansen, B.M.P., Kratsch, S.: Kernelization lower bounds by cross-composition. SIAM J. Discrete Math. 28(1), 277–305 (2014). https://doi.org/10.1137/120880240

    Article  MathSciNet  MATH  Google Scholar 

  13. Bodlaender, H.L., Thomassé, S., Yeo, A.: Kernel bounds for disjoint cycles and disjoint paths. Theoret. Comput. Sci. 412(35), 4570–4578 (2011). https://doi.org/10.1016/j.tcs.2011.04.039

    Article  MathSciNet  MATH  Google Scholar 

  14. Boliac, R., Lozin, V.V.: Independent domination in finitely defined classes of graphs. Theoret. Comput. Sci. 301(1–3), 271–284 (2003). https://doi.org/10.1016/S0304-3975(02)00586-8

    Article  MathSciNet  MATH  Google Scholar 

  15. Bonnet, É., Lampis, M., Paschos, V.T.: Time-approximation trade-offs for inapproximable problems. J. Comput. Syst. Sci. 92, 171–180 (2018). https://doi.org/10.1016/j.jcss.2017.09.009

    Article  MathSciNet  MATH  Google Scholar 

  16. Bonnet, É., Vangelis, T.: Paschos Sparsification and subexponential approximation. Acta Informatica 55(1), 1–15 (2018). https://doi.org/10.1007/s00236-016-0281-2

    Article  MathSciNet  MATH  Google Scholar 

  17. Bonnet, E., Thomassé, S., Tran, X.T., Watrigant, R.: An algorithmic weakening of the Erdős–Hajnal conjecture. In: Proceedings of the 28th Annual European Symposium on Algorithms (ESA), volume 173 of LIPIcs, pp. 23:1–23:18 (2020). https://doi.org/10.4230/LIPIcs.ESA.2020.23

  18. Boria, N., Croce, F.D., Paschos, V.T.: On the max min vertex cover problem. Discrete Appl. Math. 196, 62–71 (2015). https://doi.org/10.1016/j.dam.2014.06.001

    Article  MathSciNet  MATH  Google Scholar 

  19. Brandstädt, A.: (\(P_5\), diamond)-free graphs revisited: structure and linear time optimization. Discrete Appl. Math. 138(1–2), 13–27 (2004). https://doi.org/10.1016/S0166-218X(03)00266-X

    Article  MathSciNet  MATH  Google Scholar 

  20. Casel, K., Fernau, H., Ghadikolaei, M.K., Monnot, J., Sikora, F.: Extension of vertex cover and independent set in some classes of graphs. In: Proceedings of the 11th International Conference on Algorithms and Complexity (CIAC), volume 11485 of LNCS, pp. 124–136 (2019). https://doi.org/10.1007/978-3-030-17402-6_11

  21. Chen, J., Fernau, H., Kanj, I.A., Xia, G.: Parametric duality and kernelization: lower bounds and upper bounds on kernel size. SIAM J. Comput. 37(4), 1077–1106 (2007). https://doi.org/10.1137/050646354

    Article  MathSciNet  MATH  Google Scholar 

  22. Chudnovsky, M.: The Erdős–Hajnal conjecture—a survey. J. Graph Theory 75(2), 178–190 (2014). https://doi.org/10.1002/jgt.21730

    Article  MathSciNet  MATH  Google Scholar 

  23. Chudnovsky, M., Safra, S.: The Erdős–Hajnal conjecture for bull-free graphs. J. Combin. Theory Ser. B 98(6), 1301–1310 (2008). https://doi.org/10.1016/j.jctb.2008.02.005

    Article  MathSciNet  MATH  Google Scholar 

  24. Chudnovsky, M., Scott, A., Seymour, P.D., Spirkl, S.: Erdos–Hajnal for graphs with no \(5\)-hole. CoRR, abs/2102.04994 (2021). arXiv:2102.04994

  25. Courcelle, B., Makowsky, J.A., Rotics, U.: Linear time solvable optimization problems on graphs of bounded clique-width. Theory Comput. Syst. 33(2), 125–150 (2000). https://doi.org/10.1007/s002249910009

    Article  MathSciNet  MATH  Google Scholar 

  26. Cygan, M., Fomin, F.V., Kowalik, L., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer (2015). https://doi.org/10.1007/978-3-319-21275-3

  27. Damaschke, P.: Parameterized algorithms for double hypergraph dualization with rank limitation and maximum minimal vertex cover. Discrete Optim. 8(1), 18–24 (2011). https://doi.org/10.1016/j.disopt.2010.02.006

    Article  MathSciNet  MATH  Google Scholar 

  28. Dell, H., Marx, D.: Kernelization of packing problems. In: Proceedings of the 23rd Annual ACM-SIAM Symposium on Discrete Algorithms (SODA), pp. 68–81 (2012). https://doi.org/10.1137/1.9781611973099.6

  29. Dell, H., van Melkebeek, D.: Satisfiability allows no nontrivial sparsification unless the polynomial-time hierarchy collapses. J. ACM 61(4), 23:1-23:27 (2014). https://doi.org/10.1145/2629620

    Article  MathSciNet  MATH  Google Scholar 

  30. Diestel, R.: Graph Theory, 4th Edition, volume 173 of Graduate Texts in Mathematics. Springer (2012). https://dblp.org/rec/books/daglib/0030488.bib

  31. Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity. Texts in Computer Science. Springer (2013). https://doi.org/10.1007/978-1-4471-5559-1

  32. Dublois, L., Hanaka, T., Ghadikolaei, M.K., Lampis, M., Melissinos, N.: (In)approximability of Maximum Minimal FVS. In: Proceedings of the 31st International Symposium on Algorithms and Computation (ISAAC), volume 181 of LIPIcs, pp. 3:1–3:14 (2020). The cubic kernel appears in the full version, available at https://arxiv.org/abs/2009.09971. https://doi.org/10.4230/LIPIcs.ISAAC.2020.3

  33. Dublois, L., Lampis, M., Paschos, V.T.: Upper Dominating Set: Tight Algorithms for Pathwidth and Sub-Exponential Approximation. CoRR, abs/2101.07550 (2021). arXiv:2101.07550

  34. Erdős, P., Hajnal, A.: Ramsey-type theorems. Discrete Appl. Math. 25(1–2), 37–52 (1989). https://doi.org/10.1016/0166-218X(89)90045-0

    Article  MathSciNet  MATH  Google Scholar 

  35. Fernau, H.: Parameterized algorithms: a graph-theoretic approach. Habilitationsschrift, Universität Tübingen (2005). http://www.informatik.uni-trier.de/~fernau/papers/habil.pdf

  36. Fomin, F.V., Lokshtanov, D., Saurabh, S., Zehavi, M.: Kernelization. Theory of Parameterized Preprocessing. Cambridge University Press (2019). https://doi.org/10.1017/9781107415157

  37. Fortnow, L., Santhanam, R.: Infeasibility of instance compression and succinct PCPs for NP. J. Comput. Syst. Sci. 77(1), 91–106 (2011). https://doi.org/10.1016/j.jcss.2010.06.007

    Article  MathSciNet  MATH  Google Scholar 

  38. Garey, M.R., Johnson, D.S.: Computers and Intractability: A Guide to the Theory of NP-Completeness. W. H. Freeman (1979). https://doi.org/10.5555/574848

  39. Giannopoulou, A.C., Lokshtanov, D., Saurabh, S., Suchý, O.: Tree deletion set has a polynomial kernel but no OPT\(^{O(1)}\) approximation. SIAM J. Discrete Math. 30(3), 1371–1384 (2016). https://doi.org/10.1137/15M1038876

    Article  MathSciNet  MATH  Google Scholar 

  40. Goddard, W., Henning, M.A.: Independent domination in graphs: a survey and recent results. Discrete Math. 313(7), 839–854 (2013). https://doi.org/10.1016/j.disc.2012.11.031

    Article  MathSciNet  MATH  Google Scholar 

  41. Goddard, W., Lyle, J.: Independent dominating sets in triangle-free graphs. J. Comb. Optim. 23(1), 9–20 (2012). https://doi.org/10.1007/s10878-010-9336-4

    Article  MathSciNet  MATH  Google Scholar 

  42. Guo, J., Kanj, I.A., Kratsch, S.: Safe approximation and its relation to kernelization. In: Proceedings of the 6th International Symposium on Parameterized and Exact Computation (IPEC), volume 7112 of LNCS, pp. 169–180 (2011). https://doi.org/10.1007/978-3-642-28050-4_14

  43. Gyárfás, A.: Reflections on a problem of Erdős and Hajnal. In: Graham, R.L., Nesetril, J., Butler, S. (eds), The Mathematics of Paul Erdős II, pp. 135–141. Springer (2013). https://doi.org/10.1007/978-1-4614-7254-4_11

  44. Haviland, J.: Independent domination in triangle-free graphs. Discrete Math. 308(16), 3545–3550 (2008). https://doi.org/10.1016/j.disc.2007.07.010

    Article  MathSciNet  MATH  Google Scholar 

  45. Hermelin, D., Wu, X.: Weak compositions and their applications to polynomial lower bounds for kernelization. In: Proceedings of the 23rd Annual ACM-SIAM Symposium on Discrete Algorithms (SODA), pp. 104–113 (2012). https://doi.org/10.1137/1.9781611973099.9

  46. Hochbaum, D.S., Shmoys, D.B.: Using dual approximation algorithms for scheduling problems theoretical and practical results. J. ACM 34(1), 144–162 (1987). https://doi.org/10.1145/7531.7535

    Article  MathSciNet  Google Scholar 

  47. Hurink, J.L., Nieberg, T.: Approximating minimum independent dominating sets in wireless networks. Inf. Process. Lett. 109(2), 155–160 (2008). https://doi.org/10.1016/j.ipl.2008.09.021

    Article  MathSciNet  MATH  Google Scholar 

  48. Khot, S., Regev, O.: Vertex cover might be hard to approximate to within 2-\(\varepsilon \). J. Comput. Syst. Sci. 74(3), 335–349 (2008). https://doi.org/10.1016/j.jcss.2007.06.019

    Article  MathSciNet  MATH  Google Scholar 

  49. Kratsch, S.: Polynomial kernelizations for MIN F\(^+ \Pi _1\) and MAX NP. Algorithmica 63(1–2), 532–550 (2012). https://doi.org/10.1007/s00453-011-9559-5

    Article  MathSciNet  MATH  Google Scholar 

  50. Kratsch, S., Pilipczuk, M., Rai, A., Raman, V.: Kernel lower bounds using co-nondeterminism: finding induced hereditary subgraphs. ACM Trans. Comput. Theory 7(1), 4:1-4:18 (2014). https://doi.org/10.1145/2691321

    Article  MathSciNet  MATH  Google Scholar 

  51. Lokshtanov, D., Panolan, F., Ramanujan, M.S., Saurabh, S.: Lossy kernelization. In: Proceedings of the 49th Annual ACM Symposium on Theory of Computing (STOC), pp. 224–237 (2017). https://doi.org/10.1145/3055399.3055456

  52. Ore, O.: Theory of Graphs, vol. 38. American Mathematical Society Colloquium Publications (1962). URL: https://bookstore.ams.org/coll-38

  53. Ramsey, F.P.: On a problem of formal logic. Proc. Lond. Math. Soc. s2–30(1), 264–286 (1930). https://doi.org/10.1112/plms/s2-30.1.264

    Article  MathSciNet  MATH  Google Scholar 

  54. Robertson, N., Sanders, D.P., Seymour, P.D., Thomas, R.: The four-colour theorem. J. Combin. Theory Ser. B 70(1), 2–44 (1997). https://doi.org/10.1006/jctb.1997.1750

    Article  MathSciNet  MATH  Google Scholar 

  55. Topp, J., Volkmann, L.: On graphs with equal domination and independent domination numbers. Discrete Math. 96(1), 75–80 (1991). https://doi.org/10.1016/0012-365X(91)90473-F

    Article  MathSciNet  MATH  Google Scholar 

  56. Williamson, D.P., Shmoys, D.B.: The Design of Approximation Algorithms. Cambridge University Press (2011). http://www.cambridge.org/de/knowledge/isbn/item5759340/?site_locale=de_DE

  57. Yannakakis, M.: The effect of a connectivity requirement on the complexity of maximum subgraph problems. J. ACM 26(4), 618–630 (1979). https://doi.org/10.1145/322154.322157

    Article  MathSciNet  MATH  Google Scholar 

  58. Zehavi, M.: Maximum minimal vertex cover parameterized by vertex cover. SIAM J. Discrete Math. 31(4), 2440–2456 (2017). https://doi.org/10.1137/16M109017X

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

We would like to thank Michael Lampis (resp. Magnus Wahlström, Venkatesh Raman) for pointing us to reference [32] (resp. reference [39], references [9, 50]).

Funding

Júlio Araújo: CNPq-Pq 304478/2018-0, CAPES-PrInt 88887.466468/2019-00 and CAPES-STIC-AmSud 88881.569474/2020-01. Victor Campos: FUNCAP - PNE-011200061.01.00/16. Ignasi Sau: DEMOGRAPH (ANR-16-CE40-0028), ESIGMA (ANR-17-CE23-0010), ELIT (ANR-20-CE48-0008-01), and French-German Collaboration ANR/DFG Project UTMA (ANR-20-CE92-0027).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marin Bougeret.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Related version Some of the results of this paper appeared in the preliminary version published in the proceedings of IPEC 2021 [4]. This paper is available at https://arxiv.org/abs/2102.02484

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Araújo, J., Bougeret, M., Campos, V. et al. Introducing lop-Kernels: A Framework for Kernelization Lower Bounds. Algorithmica 84, 3365–3406 (2022). https://doi.org/10.1007/s00453-022-00979-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00453-022-00979-z

Keywords

Mathematics Subject Classification

Navigation