Skip to main content
Log in

Structural Parameterizations with Modulator Oblivion

  • Published:
Algorithmica Aims and scope Submit manuscript

Abstract

It is known that problems like Vertex Cover, Feedback Vertex Set and Odd Cycle Transversal are polynomial time solvable in the class of chordal graphs. We consider these problems in a graph that has at most k vertices whose deletion results in a chordal graph when parameterized by k. While this investigation fits naturally into the recent trend of what is called ‘structural parameterizations’, here we assume that the deletion set is not given. One method to solve them is to compute a k-sized or an approximate (f(k) sized, for a function f) chordal vertex deletion set and then use the structural properties of the graph to design an algorithm. This method leads to at least \(k^{{{\mathcal {O}}}(k)}n^{{{\mathcal {O}}}(1)}\) running time when we use the known parameterized or approximation algorithms for finding a k-sized chordal deletion set on an n vertex graph. In this work, we design \(2^{{{\mathcal {O}}}(k)}n^{{{\mathcal {O}}}(1)}\) time algorithms for these problems. Our algorithms do not compute a chordal vertex deletion set (or even an approximate solution). Instead, we construct a tree decomposition of the given graph in \(2^{{{\mathcal {O}}}(k)}n^{{{\mathcal {O}}}(1)}\) time where each bag is a union of four cliques and \({{\mathcal {O}}}(k)\) vertices. We then apply standard dynamic programming algorithms over this special tree decomposition. This special tree decomposition can be of independent interest. Our algorithms are, what are sometimes called permissive in the sense that given an integer k, they detect whether the graph has no chordal vertex deletion set of size at most k or output the special tree decomposition and solve the problem. We also show lower bounds for the problems we deal with under the strong exponential time hypothesis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Notes

  1. We acknowledge Bart Jansen for the ideas leading to this algorithm.

References

  1. Agrawal, A., Lokshtanov, D., Misra, P., Saurabh, S., Zehavi, M.: Polylogarithmic approximation algorithms for weighted-f-deletion problems. ACM Trans. Algorithms 16(4), 51:1-51:38 (2020)

  2. Bodlaender, H.L.: A linear-time algorithm for finding tree-decompositions of small treewidth. SIAM J. Comput. 25(6), 1305–1317 (1996)

    Article  MathSciNet  Google Scholar 

  3. Bodlaender, H.L., Cygan, M., Kratsch, S., Nederlof, J.: Deterministic single exponential time algorithms for connectivity problems parameterized by treewidth. Inf. Comput. 243, 86–111 (2015)

    Article  MathSciNet  Google Scholar 

  4. Bodlaender, H.L., Drange, P.G., Dregi, M.S., Fomin, F.V., Lokshtanov, D., Pilipczuk, M.: A \(c^{kn}\) 5-approximation algorithm for treewidth. SIAM J. Comput. 45(2), 317–378 (2016)

    Article  MathSciNet  Google Scholar 

  5. Booth, K.S., Johnson, J.H.: Dominating sets in chordal graphs. SIAM J. Comput. 11, 191–199 (1982)

    Article  MathSciNet  Google Scholar 

  6. Brandstädt, A.: On robust algorithms for the maximum weight stable set problem. In: International Symposium on Fundamentals of Computation Theory, pp. 445–458. Springer (2001)

  7. Breu, H., Kirkpatrick, D.G.: Unit disk graph recognition is NP-hard. Comput. Geom. 9(1–2), 3–24 (1998)

    Article  MathSciNet  Google Scholar 

  8. Cao, Y., Marx, D.: Chordal editing is fixed-parameter tractable. Algorithmica 75(1), 118–137 (2016)

    Article  MathSciNet  Google Scholar 

  9. Clark, B.N., Colbourn, C.J., Johnson, D.S.: Unit disk graphs. Discrete Math. 86(1–3), 165–177 (1990)

    Article  MathSciNet  Google Scholar 

  10. Corneil, D.G., Fonlupt, J.: The complexity of generalized clique covering. Discrete Appl. Math. 22(2), 109–118 (1988)

    Article  MathSciNet  Google Scholar 

  11. Cygan, M., Dell, H., Lokshtanov, D., Marx, D., Nederlof, J., Okamoto, Y., Paturi, R., Saurabh, S., Wahlström, M.: On problems as hard as CNF-SAT. ACM Trans. Algorithms 12(3), 41:1-41:24 (2016)

    Article  MathSciNet  Google Scholar 

  12. Cygan, M., Fomin, F.V., Kowalik, Ł, Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms, vol. 3. Springer, Berlin (2015)

    Book  Google Scholar 

  13. Cygan, M., Pilipczuk, M., Pilipczuk, M., Wojtaszczyk, J.O.: On multiway cut parameterized above lower bounds. TOCT 5(1), 3:1-3:11 (2013)

    Article  MathSciNet  Google Scholar 

  14. Diestel, R.: Graph Theory. Springer, Berlin (2006)

    MATH  Google Scholar 

  15. Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity, vol. 4. Springer, Berlin (2013)

    Book  Google Scholar 

  16. Farber, M.: On diameters and radii of bridged graphs. Discrete Math. 73(3), 249–260 (1989)

    Article  MathSciNet  Google Scholar 

  17. Fellows, M., Rosamond, F.: The complexity ecology of parameters: an illustration using bounded max leaf number. In: Conference on Computability in Europe, pp. 268–277. Springer, (2007)

  18. Fellows, M.R., Jansen, B.M., Rosamond, F.: Towards fully multivariate algorithmics: parameter ecology and the deconstruction of computational complexity. Eur. J. Comb. 34(3), 541–566 (2013)

    Article  MathSciNet  Google Scholar 

  19. Fomin, F.V., Golovach, P.A.: Subexponential parameterized algorithms and kernelization on almost chordal graphs. In: 28th Annual European Symposium on Algorithms, ESA 2020, September 7–9, 2020, Pisa, Italy (Virtual Conference), pp. 49:1–49:17 (2020)

  20. Fomin, F.V., Kaski, P., Lokshtanov, D., Panolan, F., Saurabh, S.: Parameterized single-exponential time polynomial space algorithm for steiner tree. SIAM J. Discrete Math. 33(1), 327–345 (2019)

    Article  MathSciNet  Google Scholar 

  21. Fomin, F.V., Todinca, I., Villanger, Y.: Large induced subgraphs via triangulations and CMSO. SIAM J. Comput. 44(1), 54–87 (2015)

    Article  MathSciNet  Google Scholar 

  22. Gaspers, S., Szeider, S.: Backdoors to satisfaction. In: Bodlaender, H.L., Downey, R., Fomin, F.V., Marx, D. (eds.) The Multivariate Algorithmic Revolution and Beyond-Essays Dedicated to Michael R. Fellows on the Occasion of His 60th Birthday, volume 7370 of Lecture Notes in Computer Science, pp. 287–317. Springer (2012)

  23. Golumbic, M.C.: Algorithmic Graph Theory and Perfect Graphs, vol. 57. Elsevier, Amsterdam (2004)

    MATH  Google Scholar 

  24. Habib, M., Paul, C.: A simple linear time algorithm for cograph recognition. Discrete Appl. Math. 145(2), 183–197 (2005)

    Article  MathSciNet  Google Scholar 

  25. Heggernes, P., van’t Hof, P., Jansen, B.M.P., Kratsch, S., Villanger, Y.: Parameterized complexity of vertex deletion into perfect graph classes. Theor. Comput. Sci. 511, 172–180 (2013)

    Article  MathSciNet  Google Scholar 

  26. Iwata, Y., Yamaguchi, Y., Yoshida, Y.: 0/1/all CSPs, Half-integral A-path packing, and linear-time FPT algorithms. In: 2018 IEEE 59th Annual Symposium on Foundations of Computer Science (FOCS), pp. 462–473. IEEE (2018)

  27. Jacob, A., Panolan, F., Raman, V., Sahlot, V.: Structural parameterizations with modulator oblivion. In: 15th International Symposium on Parameterized and Exact Computation, IPEC 2020, December 14–18, 2020, Hong Kong, China (Virtual Conference), pp. 19:1–19:18 (2020)

  28. Jansen, B.M.: The Power of Data Reduction: Kernels for Fundamental Graph Problems. PhD thesis, Utrecht University (2013)

  29. Jansen, B.M., Bodlaender, H.L.: Vertex cover kernelization revisited. Theory Comput. Syst. 53(2), 263–299 (2013)

    Article  MathSciNet  Google Scholar 

  30. Jansen, B.M., Raman, V., Vatshelle, M.: Parameter ecology for feedback vertex set. Tsinghua Sci. Technol. 19(4), 387–409 (2014)

    Article  MathSciNet  Google Scholar 

  31. Jansen, B.M.P., Pilipczuk, M.: Approximation and kernelization for chordal vertex deletion. SIAM J. Discrete Math. 32(3), 2258–2301 (2018)

    Article  MathSciNet  Google Scholar 

  32. Kim, E.J., Kwon, O.: Erdős-pósa property of chordless cycles and its applications. J. Comb. Theory Ser. B 145, 65–112 (2020)

    Article  Google Scholar 

  33. Liedloff, M., Montealegre, P., Todinca, I.: Beyond classes of graphs with “few’’ minimal separators: FPT results through potential maximal cliques. Algorithmica 81(3), 986–1005 (2019)

    Article  MathSciNet  Google Scholar 

  34. Lokshtanov, D., Narayanaswamy, N., Raman, V., Ramanujan, M., Saurabh, S.: Faster parameterized algorithms using linear programming. ACM Trans. Algorithms (TALG) 11(2), 15 (2014)

    MathSciNet  MATH  Google Scholar 

  35. Majumdar, D., Raman, V.: Structural parameterizations of undirected feedback vertex set: FPT algorithms and kernelization. Algorithmica 80(9), 2683–2724 (2018)

    Article  MathSciNet  Google Scholar 

  36. Majumdar, D., Raman, V., Saurabh, S.: Polynomial kernels for vertex cover parameterized by small degree modulators. Theory Comput. Syst. 62(8), 1910–1951 (2018)

    Article  MathSciNet  Google Scholar 

  37. Makino, K., Uno, T.: New algorithms for enumerating all maximal cliques. In: Scandinavian Workshop on Algorithm Theory, pp. 260–272. Springer (2004)

  38. Raghavan, V., Spinrad, J.P.: Robust algorithms for restricted domains. J. Algorithms 48(1), 160–172 (2003)

    Article  MathSciNet  Google Scholar 

  39. Robertson, N., Seymour, P.D.: Graph minors. XIII. The disjoint paths problem. J. Comb. Theory Ser. B 63(1), 65–110 (1995)

    Article  MathSciNet  Google Scholar 

  40. Spinrad, J.P.: Efficient Graph Representations. American Mathematical Society, Providence (2003)

    Book  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ashwin Jacob.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

A preliminary version appeared in the proceedings of IPEC 2020 [27].

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jacob, A., Panolan, F., Raman, V. et al. Structural Parameterizations with Modulator Oblivion. Algorithmica 84, 2335–2357 (2022). https://doi.org/10.1007/s00453-022-00971-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00453-022-00971-7

Keywords

Navigation