Skip to main content
Log in

Twin-width and Polynomial Kernels

  • Published:
Algorithmica Aims and scope Submit manuscript

Abstract

We study the existence of polynomial kernels, for parameterized problems without a polynomial kernel on general graphs, when restricted to graphs of bounded twin-width. Our main result is that a polynomial kernel for k -Dominating Set on graphs of twin-width at most 4 would contradict a standard complexity-theoretic assumption. The reduction is quite involved, especially to get the twin-width upper bound down to 4, and can be tweaked to work for Connected k -Dominating Set and Total k -Dominating Set (albeit with a worse upper bound on the twin-width). The k -Independent Set problem admits the same lower bound by a much simpler argument, previously observed [ICALP ’21], which extends to k -Independent Dominating Set, k -Path, k -Induced Path, k -Induced Matching, etc. On the positive side, we obtain a simple quadratic vertex kernel for Connected k -Vertex Cover and Capacitated k -Vertex Cover on graphs of bounded twin-width. Interestingly the kernel applies to graphs of Vapnik–Chervonenkis density 1, and does not require a witness sequence. We also present a more intricate \(O(k^{1.5})\) vertex kernel for Connected k -Vertex Cover. Finally we show that deciding if a graph has twin-width at most 1 can be done in polynomial time, and observe that most optimization/decision graph problems can be solved in polynomial time on graphs of twin-width at most 1.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Notes

  1. See Sect. 2 for the relevant background on how to rule out a polynomial kernel

  2. All the subsequent results also hold for \(k\) -Independent Set.

  3. Sparse is an overloaded term; here we use it as not containing arbitrarily large bicliques as subgraphs.

  4. The definition of nowhere denseness being technical and unnecessary to the current paper, we refer the interested reader to [44]. Let us just mention that bounded-degree graphs, planar graphs, and proper (topological) minor-closed classes are all nowhere dense.

  5. We will not need a definition of expansion here. Bounded expansion classes are more general than topological-minor-free classes and less general than nowhere dense classes.

References

  1. Alber, J., Fellows, M.R., Niedermeier, R.: Polynomial-time data reduction for dominating set. J. ACM 51(3), 363–384 (2004). https://doi.org/10.1145/990308.990309

    Article  MathSciNet  MATH  Google Scholar 

  2. Alon, N., Gutner, S.: Linear time algorithms for finding a dominating set of fixed size in degenerated graphs. Algorithmica 54(4), 544–556 (2009). https://doi.org/10.1007/s00453-008-9204-0

    Article  MathSciNet  MATH  Google Scholar 

  3. Bodlaender, H.L., Downey, R.G., Fellows, M.R., Hermelin, D.: On problems without polynomial kernels. J. Comput. Syst. Sci. 75(8), 423–434 (2009). https://doi.org/10.1016/j.jcss.2009.04.001

    Article  MathSciNet  MATH  Google Scholar 

  4. Bonnet, É., Geniet, C., Kim, E.J., Thomassé, S., Watrigant, R.: Twin-width II: small classes. In: Proceedings of the 2021 ACM-SIAM Symposium on Discrete Algorithms (SODA), pp. 1977–1996 (2021). https://doi.org/10.1137/1.9781611976465.118

  5. Bonnet, É., Geniet, C., Kim, E. J., Thomassé, S., Watrigant, R.: Twin-width III: max independent set, min dominating set, and coloring. In: Bansal, N., Merelli, E., Worrell, J., (eds), 48th International Colloquium on Automata, Languages, and Programming (ICALP 2021), volume 198 of Leibniz International Proceedings in Informatics (LIPIcs), pp. 35:1–35:20, Dagstuhl, Germany, 2021. Schloss Dagstuhl – Leibniz-Zentrum für Informatik. https://drops.dagstuhl.de/opus/volltexte/2021/14104, https://doi.org/10.4230/LIPIcs.ICALP.2021.35

  6. Bonnet, É., Giocanti, U., Ossona de Mendez, P., Simon, P., Thomassé, S., Toruńczyk, S.: Twin-width IV: ordered graphs and matrices. CoRR, abs/2102.03117, 2021. arXiv:2102.03117

  7. Bonnet, É., Kim, E. J., Reinald, A., Thomassé, S.: Twin-width VI: the lens of contraction sequences. In: Proceedings of the Thirty Third Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2022, Alexandria, Virginia, USA (online), January 9–12, 2022 (2022)

  8. Bonnet, É., Kim, E. J., Thomassé, S. Watrigant, R.: Twin-width I: tractable FO model checking. J. ACM, 69(1), 3:1–3:46 (2022). https://doi.org/10.1145/3486655

  9. Bousquet, N., Gonçalves, D., Mertzios, G.B., Paul, C., Sau, I., Thomassé, S.: Parameterized domination in circle graphs. Theory Comput. Syst. 54(1), 45–72 (2014). https://doi.org/10.1007/s00224-013-9478-8

    Article  MathSciNet  MATH  Google Scholar 

  10. Chan, T. M., Grant, E., Könemann, J., Sharpe, M.: Weighted capacitated, priority, and geometric set cover via improved quasi-uniform sampling. In: Rabani, Y., (ed) Proceedings of the Twenty-Third Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2012, Kyoto, Japan, January 17–19, 2012, pp. 1576–1585. SIAM (2012). https://doi.org/10.1137/1.9781611973099.125

  11. Chen, J., Fernau, H., Kanj, I.A., Xia, G.: Parametric duality and kernelization: Lower bounds and upper bounds on kernel size. SIAM J. Comput. 37(4), 1077–1106 (2007). https://doi.org/10.1137/050646354

    Article  MathSciNet  MATH  Google Scholar 

  12. Chen, J., Huang, X., Kanj, I.A., Xia, G.: Strong computational lower bounds via parameterized complexity. J. Comput. Syst. Sci. 72(8), 1346–1367 (2006). https://doi.org/10.1016/j.jcss.2006.04.007

    Article  MathSciNet  MATH  Google Scholar 

  13. Cibulka, J., Kyncl, J.: Füredi-Hajnal limits are typically subexponential. CoRR, abs/1607.07491, (2016). arXiv:1607.07491

  14. Clark, B.N., Colbourn, C.J., Johnson, D.S.: Unit disk graphs. Discret. Math. 86(1–3), 165–177 (1990). https://doi.org/10.1016/0012-365X(90)90358-O

    Article  MathSciNet  MATH  Google Scholar 

  15. Courcelle, B., Makowsky, J.A., Rotics, U.: Linear time solvable optimization problems on graphs of bounded clique-width. Theory Comput. Syst. 33(2), 125–150 (2000). https://doi.org/10.1007/s002249910009

    Article  MathSciNet  MATH  Google Scholar 

  16. Cygan, M.: Deterministic parameterized connected vertex cover. In: Fomin, F. V., Kaski,, P., (eds) Algorithm Theory - SWAT 2012 - 13th Scandinavian Symposium and Workshops, Helsinki, Finland, July 4–6, 2012. Proceedings, volume 7357 of Lecture Notes in Computer Science, pp. 95–106. Springer (2012). https://doi.org/10.1007/978-3-642-31155-0_9

  17. Cygan, M., Fomin, F. V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms, vol. 4. Springer (2015)

  18. Cygan, M., Grandoni, F., Hermelin, D.: Tight kernel bounds for problems on graphs with small degeneracy. ACM Trans. Algorithms 13(3), 43:1-43:22 (2017). https://doi.org/10.1145/3108239

    Article  MathSciNet  MATH  Google Scholar 

  19. Cygan, M., Philip, G., Pilipczuk, M., Pilipczuk, M., Wojtaszczyk, J.O.: Dominating set is fixed parameter tractable in claw-free graphs. Theor. Comput. Sci. 412(50), 6982–7000 (2011). https://doi.org/10.1016/j.tcs.2011.09.010

    Article  MathSciNet  MATH  Google Scholar 

  20. Cygan, M., Pilipczuk, M., Pilipczuk, M., Wojtaszczyk, J.O.: Kernelization hardness of connectivity problems in d-degenerate graphs. Discrete Appl. Math. 160(15), 2131–2141 (2012). https://doi.org/10.1016/j.dam.2012.05.016

    Article  MathSciNet  MATH  Google Scholar 

  21. Dawar, A., Kreutzer, S.: Domination problems in nowhere-dense classes. In: Kannan, R., Narayan Kumar, K., (eds) IARCS Annual Conference on Foundations of Software Technology and Theoretical Computer Science, FSTTCS 2009, December 15–17, 2009, IIT Kanpur, India, vol. 4 of LIPIcs, pp. 157–168. Schloss Dagstuhl - Leibniz-Zentrum für Informatik (2009). https://doi.org/10.4230/LIPIcs.FSTTCS.2009.2315

  22. Demaine, E.D., Fomin, F.V., Hajiaghayi, M.T., Thilikos, D.M.: Subexponential parameterized algorithms on bounded-genus graphs and H-minor-free graphs. J. ACM 52(6), 866–893 (2005). https://doi.org/10.1145/1101821.1101823

    Article  MathSciNet  MATH  Google Scholar 

  23. Dom, M., Lokshtanov, D., Saurabh, S.: Kernelization lower bounds through colors and IDs. ACM Trans. Algorithms 11(2), 13:1-13:20 (2014). https://doi.org/10.1145/2650261

    Article  MathSciNet  MATH  Google Scholar 

  24. Dorn, F.: Dynamic programming and fast matrix multiplication. In: Azar, Y., Erlebach, T., editors, Algorithms - ESA 2006, 14th Annual European Symposium, Zurich, Switzerland, September 11–13, 2006, Proceedings, vol. 4168 of Lecture Notes in Computer Science, pp. 280–291. Springer (2006). https://doi.org/10.1007/11841036_27

  25. Downey, R. G., Fellows, M. R.: Fundamentals of parameterized complexity. Texts in Computer Science. Springer, Berlin (2013). https://doi.org/10.1007/978-1-4471-5559-1

  26. Drange, P. G., Dregi, M. S., Fomin, F. V., Kreutzer, S., Lokshtanov, D., Pilipczuk, M., Pilipczuk, M., Reidl, F., Villaamil, F. S., Saurabh, S., Siebertz, S., Sikdar, S.: Kernelization and sparseness: the case of dominating set. In: Ollinger, N., Vollmer, H., (eds) 33rd Symposium on Theoretical Aspects of Computer Science, STACS 2016, February 17–20, 2016, Orléans, France, vol. 47 of LIPIcs, pp. 31:1–31:14. Schloss Dagstuhl - Leibniz-Zentrum für Informatik (2016). https://doi.org/10.4230/LIPIcs.STACS.2016.31

  27. Farber, M., Mark Keil, J.: Domination in permutation graphs. J. Algorithms 6(3), 309–321 (1985). https://doi.org/10.1016/0196-6774(85)90001-X

    Article  MathSciNet  MATH  Google Scholar 

  28. Fomin, F.V., Lokshtanov, D., Saurabh, S., Thilikos, D.M.: Kernels for (connected) dominating set on graphs with excluded topological minors. ACM Trans. Algorithms 14(1), 6:1-6:31 (2018)

    Article  MathSciNet  Google Scholar 

  29. Fomin, F.V., Lokshtanov, D., Saurabh, S., Thilikos, D.M.: Bidimensionality and kernels. SIAM J. Comput. 49(6), 1397–1422 (2020). https://doi.org/10.1137/16M1080264

    Article  MathSciNet  MATH  Google Scholar 

  30. Fomin, F. V., Thilikos, D. M.: Fast parameterized algorithms for graphs on surfaces: linear kernel and exponential speed-up. In: Díaz, J., Karhumäki, J., Lepistö, A., Sannella, D., (eds), Automata, Languages and Programming: 31st International Colloquium, ICALP 2004, Turku, Finland, July 12–16, 2004. Proceedings, vol. 3142 of Lecture Notes in Computer Science, pp. 581–592. Springer (2004). https://doi.org/10.1007/978-3-540-27836-8_50

  31. Fomin, F.V., Thilikos, D.M.: Dominating sets in planar graphs: branch-width and exponential speed-up. SIAM J. Comput. 36(2), 281–309 (2006). https://doi.org/10.1137/S0097539702419649

    Article  MathSciNet  MATH  Google Scholar 

  32. Gajarský, J., Hlinený, P., Obdrzálek, J., Ordyniak, S., Reidl, F., Rossmanith, P., Villaamil, F.S., Sikdar, S.: Kernelization using structural parameters on sparse graph classes. J. Comput. Syst. Sci. 84, 219–242 (2017). https://doi.org/10.1016/j.jcss.2016.09.002

    Article  MathSciNet  MATH  Google Scholar 

  33. Garey, M.R., Johnson, D.S., Stockmeyer, L.J.: Some simplified np-complete graph problems. Theor. Comput. Sci. 1(3), 237–267 (1976). https://doi.org/10.1016/0304-3975(76)90059-1

    Article  MathSciNet  MATH  Google Scholar 

  34. Golovach, P. A., Villanger, Y.: Parameterized complexity for domination problems on degenerate graphs. In: Broersma, H., Erlebach, T., Friedetzky, , T., Paulusma, D., (eds), Graph-Theoretic Concepts in Computer Science, 34th International Workshop, WG 2008, Durham, UK, June 30–July 2, 2008. Revised Papers

  35. Grohe, M., Kreutzer, S., Siebertz, S.: Deciding first-order properties of nowhere dense graphs. J. ACM 64(3), 17:1-17:32 (2017). https://doi.org/10.1145/3051095

    Article  MathSciNet  MATH  Google Scholar 

  36. Grötschel, M., Lovász, L., Schrijver, A.: Corrigendum to our paper “the ellipsoid method and its consequences in combinatorial optimization’’. Combinatorica 4(4), 291–295 (1984). https://doi.org/10.1007/BF02579139

    Article  MathSciNet  MATH  Google Scholar 

  37. Gutner, S.: Polynomial kernels and faster algorithms for the dominating set problem on graphs with an excluded minor. In: Chen, J., Fomin, F. V., (eds) Parameterized and Exact Computation, 4th International Workshop, IWPEC 2009, Copenhagen, Denmark, September 10-11, 2009, Revised Selected Papers, vol. 5917 of Lecture Notes in Computer Science, pp. 246–257. Springer (2009). https://doi.org/10.1007/978-3-642-11269-0_20

  38. Habib, M., Paul, C.: A simple linear time algorithm for cograph recognition. Discret. Appl. Math. 145(2), 183–197 (2005). https://doi.org/10.1016/j.dam.2004.01.011

    Article  MathSciNet  MATH  Google Scholar 

  39. Hermelin, D., Mnich, M., van Leeuwen, E.J., Woeginger, G.J.: Domination when the stars are out. ACM Trans. Algorithms 15(2), 25:1-25:90 (2019). https://doi.org/10.1145/3301445

    Article  MathSciNet  MATH  Google Scholar 

  40. Kim, E.J., Langer, A., Paul, C., Reidl, F., Rossmanith, P., Sau, I., Sikdar, S.: Linear kernels and single-exponential algorithms via protrusion decompositions. ACM Trans. Algorithms 12(2), 21:1-21:41 (2016). https://doi.org/10.1145/2797140

    Article  MathSciNet  MATH  Google Scholar 

  41. Koana, T., Komusiewicz, C., Sommer, F.: Exploiting c-closure in kernelization algorithms for graph problems. In: Grandoni, F., Herman, G., Sanders, P., (eds.) 28th Annual European Symposium on Algorithms, ESA 2020, September 7–9, 2020, Pisa, Italy (Virtual Conference), vol. 173 of LIPIcs, pp. 65:1–65:17. Schloss Dagstuhl - Leibniz-Zentrum für Informatik (2020). https://doi.org/10.4230/LIPIcs.ESA.2020.65

  42. Lichtenstein, D.: Planar formulae and their uses. SIAM J. Comput. 11(2), 329–343 (1982). https://doi.org/10.1137/0211025

    Article  MathSciNet  MATH  Google Scholar 

  43. Marcus, A., Tardos, G.: Excluded permutation matrices and the Stanley–Wilf conjecture. Comb. Theory Ser. A 107(1), 153–160 (2004). https://doi.org/10.1016/j.jcta.2004.04.002

    Article  MathSciNet  MATH  Google Scholar 

  44. Nesetril, J., Ossona de Mendez, P.: Sparsity - Graphs, Structures, and Algorithms, vol. 28 of Algorithms and combinatorics. Springer (2012). https://doi.org/10.1007/978-3-642-27875-4

  45. Philip, G., Raman, V., Sikdar, S.: Polynomial kernels for dominating set in graphs of bounded degeneracy and beyond. ACM Trans. Algorithms 9(1), 11:1-11:23 (2012). https://doi.org/10.1145/2390176.2390187

    Article  MathSciNet  MATH  Google Scholar 

  46. Przybyszewski, W., Toruńczyk, S.: Personal communication (2021)

  47. Raman, V., Saurabh, S.: Short cycles make W -hard problems hard: FPT algorithms for W-hard problems in graphs with no short cycles. Algorithmica 52(2), 203–225 (2008). https://doi.org/10.1007/s00453-007-9148-9

  48. Telle, J.A., Villanger, Y.: FPT algorithms for domination in sparse graphs and beyond. Theor. Comput. Sci. 770, 62–68 (2019). https://doi.org/10.1016/j.tcs.2018.10.030

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

We thank Noga Alon and Bart M. P. Jansen for independently asking whether \(k\) -Dominating Set admits a polynomial kernel on classes of bounded twin-width, an interesting question that led to our main result.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Édouard Bonnet.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bonnet, É., Kim, E.J., Reinald, A. et al. Twin-width and Polynomial Kernels. Algorithmica 84, 3300–3337 (2022). https://doi.org/10.1007/s00453-022-00965-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00453-022-00965-5

Keywords

Navigation