Skip to main content

Advertisement

Log in

A Rigorous Runtime Analysis of the \((1 + (\lambda , \lambda ))\) GA on Jump Functions

  • Published:
Algorithmica Aims and scope Submit manuscript

Abstract

The \((1 + (\lambda ,\lambda ))\) genetic algorithm is a younger evolutionary algorithm trying to profit also from inferior solutions. Rigorous runtime analyses on unimodal fitness functions showed that it can indeed be faster than classical evolutionary algorithms, though on these simple problems the gains were only moderate. In this work, we conduct the first runtime analysis of this algorithm on a multimodal problem class, the jump functions benchmark. We show that with the right parameters, the \({(1 + (\lambda , \lambda ))}\) GA optimizes any jump function with jump size \(2 \le k \le n/4\) in expected time \(O(n^{(k+1)/2} e^{O(k)} k^{-k/2})\), which significantly and already for constant k outperforms standard mutation-based algorithms with their \(\Theta (n^k)\) runtime and standard crossover-based algorithms with their \({\tilde{O}}(n^{k-1})\) runtime guarantee. For the isolated problem of leaving the local optimum of jump functions, we determine provably optimal parameters that lead to a runtime of \((n/k)^{k/2} e^{\Theta (k)}\). This suggests some general advice on how to set the parameters of the \({(1 + (\lambda , \lambda ))}\) GA, which might ease the further use of this algorithm.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Notes

  1. This particular structure of the jump benchmark has been criticized and several variants have been proposed [8, 37, 46]. With the overwhelming majority of the runtime analyses on multimodal problems still regarding the classic jump benchmark, for the sake of comparability we prefer to regard this benchmark as well.

  2. In [34] it was shown that the \({(1 + (\lambda , \lambda ))}\) GA with the standard parameter setting is not effective on Jump even when parameter control mechanisms are applied to \(\lambda \). This is another reason to step back from the standard parameters and consider a wider parameters space.

References

  1. Antipov, D., Buzdalov, M., Doerr, B.: Fast mutation in crossover-based algorithms. In: Genetic and Evolutionary Computation Conference, GECCO 2020, pp. 1268–1276. ACM (2020)

  2. Antipov, D., Buzdalov, M., Doerr, B.: Lazy parameter tuning and control: choosing all parameters randomly from a power-law distribution. In: Genetic and Evolutionary Computation Conference, GECCO 2021, pp. 1115–1123. ACM (2021)

  3. Antipov, D., Doerr, B.: Runtime analysis of a heavy-tailed \((1+(\lambda , \lambda ))\) genetic algorithm on jump functions. In: Parallel Problem Solving From Nature, PPSN 2020, Part II, pp. 545–559. Springer (2020)

  4. Antipov, D., Doerr, B.: A tight runtime analysis for the \((\mu +\lambda )\) EA. Algorithmica 83, 1054–1095 (2021)

    Article  MathSciNet  Google Scholar 

  5. Antipov, D., Doerr, B., Karavaev, V.: A tight runtime analysis for the \({(1 + (\lambda ,\lambda ))}\) GA on LeadingOnes. In: Foundations of Genetic Algorithms, FOGA 2019, pp. 169–182. ACM (2019)

  6. Antipov, D., Doerr, B., Karavaev, V.: The \((1 + (\lambda ,\lambda ))\) GA is even faster on multimodal problems. In: Genetic and Evolutionary Computation Conference, GECCO 2020, pp. 1259–1267. ACM (2020)

  7. Bäck, T.: Optimal mutation rates in genetic search. In: International Conference on Genetic Algorithms, ICGA 1993, pp. 2–8. Morgan Kaufmann (1993)

  8. Bambury, H., Bultel, A., Doerr, B.: Generalized jump functions. In: Genetic and Evolutionary Computation Conference, GECCO 2021, pp. 1124–1132. ACM (2021)

  9. Benbaki, R., Benomar, Z., Doerr, B.: A rigorous runtime analysis of the 2-MMAS\(_{\rm ib}\) on jump functions: ant colony optimizers can cope well with local optima. In: Genetic and Evolutionary Computation Conference, GECCO 2021, pp. 4–13. ACM (2021)

  10. Buzdalov, M., Doerr, B.: Runtime analysis of the \({(1+(\lambda ,\lambda ))}\) genetic algorithm on random satisfiable 3-CNF formulas. In: Genetic and Evolutionary Computation Conference, GECCO 2017, pp. 1343–1350. ACM (2017)

  11. Buzdalov, M., Doerr, B., Kever, M.: The unrestricted black-box complexity of jump functions. Evol. Comput. 24, 719–744 (2016)

    Article  Google Scholar 

  12. Badkobeh, G., Lehre, P.K., Sudholt, D.: Unbiased black-box complexity of parallel search. In: Parallel Problem Solving from Nature, PPSN 2014, pp. 892–901. Springer (2014)

  13. Doerr, B., Doerr, C.: Optimal static and self-adjusting parameter choices for the \({(1+(\lambda ,\lambda ))}\) genetic algorithm. Algorithmica 80, 1658–1709 (2018)

    Article  MathSciNet  Google Scholar 

  14. Doerr, B., Doerr, C.: Theory of parameter control for discrete black-box optimization: provable performance gains through dynamic parameter choices. In: Benjamin, D., Frank, N. (eds.) Theory of Evolutionary Computation: Recent Developments in Discrete Optimization, pp. 271–321. Springer (2020). arXiv:1804.05650

  15. Doerr, B., Doerr, C., Ebel, F.: Lessons from the black-box: fast crossover-based genetic algorithms. In: Genetic and Evolutionary Computation Conference, GECCO 2013, pp. 781–788. ACM (2013)

  16. Doerr, B., Doerr, C., Ebel, F.: From black-box complexity to designing new genetic algorithms. Theor. Comput. Sci. 567, 87–104 (2015)

    Article  MathSciNet  Google Scholar 

  17. Dang, D.-C., Friedrich, T., Kötzing, T., Krejca, M.S., Lehre, P.K., Oliveto, P.S., Sudholt, D., Sutton, A.M.: Escaping local optima with diversity mechanisms and crossover. In: Genetic and Evolutionary Computation Conference, GECCO 2016, pp. 645–652. ACM (2016)

  18. Dang, D.-C., Friedrich, T., Kötzing, T., Krejca, M.S., Lehre, P.K., Oliveto, P.S., Sudholt, D., Sutton, A.M.: Escaping local optima using crossover with emergent diversity. IEEE Trans. Evol. Comput. 22, 484–497 (2018)

    Article  Google Scholar 

  19. Doerr, B., Happ, E., Klein, C.: Crossover can provably be useful in evolutionary computation. Theor. Comput. Sci. 425, 17–33 (2012)

    Article  MathSciNet  Google Scholar 

  20. Droste, S., Jansen, T., Wegener, I.: On the analysis of the (1+1) evolutionary algorithm. Theor. Comput. Sci. 276, 51–81 (2002)

    Article  MathSciNet  Google Scholar 

  21. Droste, S., Jansen, T., Wegener, I.: Upper and lower bounds for randomized search heuristics in black-box optimization. Theory Comput. Syst. 39, 525–544 (2006)

    Article  MathSciNet  Google Scholar 

  22. Doerr, B., Krejca, M.S.: The univariate marginal distribution algorithm copes well with deception and epistasis. In: Evolutionary Computation in Combinatorial Optimization, EvoCOP 2020, pp. 51–66. Springer (2020)

  23. Doerr, B., Le, H.P., Makhmara, R., Nguyen, T.D.: Fast genetic algorithms. In: Genetic and Evolutionary Computation Conference, GECCO 2017, pp. 777–784. ACM (2017)

  24. Doerr, B., Neumann, F., Sutton, A.M.: Time complexity analysis of evolutionary algorithms on random satisfiable \(k\)-CNF formulas. Algorithmica 78, 561–586 (2017)

    Article  MathSciNet  Google Scholar 

  25. Doerr, B.: An elementary analysis of the probability that a binomial random variable exceeds its expectation. Stat. Probab. Lett. 139, 67–74 (2018)

    Article  MathSciNet  Google Scholar 

  26. Doerr, B.: Does comma selection help to cope with local optima? In: Genetic and Evolutionary Computation Conference, GECCO 2020, pp. 1304–1313. ACM (2020)

  27. Doerr, B.: Probabilistic tools for the analysis of randomized optimization heuristics. In: Doerr, B., Neumann, F. (eds.) Theory of Evolutionary Computation: Recent Developments in Discrete Optimization, pp. 1–87. Springer (2020). arXiv:1801.06733

  28. Doerr, B.: The runtime of the compact genetic algorithm on Jump functions. Algorithmica 83, 3059–3107 (2021)

    Article  MathSciNet  Google Scholar 

  29. Droste, S.: Analysis of the (1+1) EA for a dynamically changing OneMax-variant. In: Congress on Evolutionary Computation, CEC 2002, pp. 55–60. IEEE (2002)

  30. Droste, S.: Analysis of the (1+1) EA for a noisy OneMax. In: Genetic and Evolutionary Computation Conference, GECCO 2004, pp. 1088–1099. Springer (2004)

  31. Droste, S.: Not all linear functions are equally difficult for the compact genetic algorithm. In: Genetic and Evolutionary Computation Conference, GECCO 2005, pp. 679–686. ACM (2005)

  32. Erdős, P., Rényi, A.: On two problems of information theory. Magyar Tudományos Akadémia Matematikai Kutató Intézet Közleményei 8, 229–243 (1963)

  33. Friedrich, T., Kötzing, T., Krejca, M.S., Nallaperuma, S., Neumann, F., Schirneck, M.: Fast building block assembly by majority vote crossover. In: Genetic and Evolutionary Computation Conference, GECCO 2016, pp. 661–668. ACM (2016)

  34. Fajardo, M.A.H., Sudholt, D.: On the choice of the parameter control mechanism in the \((1+(\lambda ,\lambda ))\) genetic algorithm. In: Genetic and Evolutionary Computation Conference, GECCO 2020, pp. 832–840. ACM (2020)

  35. Goldman, B.W., Punch, W.F.: Parameter-less population pyramid. In: Genetic and Evolutionary Computation Conference, GECCO 2014, pp. 785–792. ACM (2014)

  36. Hasenöhrl, V., Sutton, A.M.: On the runtime dynamics of the compact genetic algorithm on jump functions. In: Genetic and Evolutionary Computation Conference, GECCO 2018, pp. 967–974. ACM (2018)

  37. Jansen, T.: On the black-box complexity of example functions: the real jump function. In: Foundations of Genetic Algorithms, FOGA 2015, pp. 16–24. ACM (2015)

  38. Jansen, T., De Jong, K.A., Wegener, I.: On the choice of the offspring population size in evolutionary algorithms. Evol. Comput. 13, 413–440 (2005)

    Article  Google Scholar 

  39. Jansen, T., Wegener, I.: The analysis of evolutionary algorithms—a proof that crossover really can help. Algorithmica 34, 47–66 (2002)

    Article  MathSciNet  Google Scholar 

  40. Lehre, P.K., Witt, C.: Black-box search by unbiased variation. Algorithmica 64, 623–642 (2012)

    Article  MathSciNet  Google Scholar 

  41. Mironovich, V., Buzdalov, M.: Evaluation of heavy-tailed mutation operator on maximum flow test generation problem. In: Genetic and Evolutionary Computation Conference, GECCO 2017, Companion Material, pp. 1423–1426. ACM (2017)

  42. Mühlenbein, H.: How genetic algorithms really work: mutation and hillclimbing. In: Parallel Problem Solving from Nature, PPSN 1992, pp. 15–26. Elsevier (1992)

  43. Rowe, J.E.: The benefits and limitations of voting mechanisms in evolutionary optimisation. In: Foundations of Genetic Algorithms, FOGA 2019, pp. 34–42. ACM (2019)

  44. Rowe, J.E., Sudholt, D.: The choice of the offspring population size in the (1, \(\lambda \)) evolutionary algorithm. Theor. Comput. Sci. 545, 20–38 (2014)

    Article  MathSciNet  Google Scholar 

  45. Rajabi, A., Witt, C.: Self-adjusting evolutionary algorithms for multimodal optimization. In: Genetic and Evolutionary Computation Conference, GECCO 2020, pp. 1314–1322. ACM (2020)

  46. Rajabi, A., Witt, C.: Stagnation detection in highly multimodal fitness landscapes. In: Genetic and Evolutionary Computation Conference, GECCO 2021, pp. 1178–1186. ACM (2021)

  47. Rajabi, A., Witt, C.: Stagnation detection with randomized local search. In: Evolutionary Computation in Combinatorial Optimization, EvoCOP 2021, pp. 152–168. Springer (2021)

  48. Sutton, A.M., Neumann, F.: Runtime analysis of evolutionary algorithms on randomly constructed high-density satisfiable 3-CNF formulas. In: Parallel Problem Solving from Nature, PPSN 2014, pp. 942–951. Springer (2014)

  49. Sudholt, D.: Crossover is provably essential for the Ising model on trees. In: Genetic and Evolutionary Computation Conference, GECCO 2005, pp. 1161–1167. ACM (2005)

  50. Storch, T., Wegener, I.: Real royal road functions for constant population size. Theor. Comput. Sci. 320, 123–134 (2004)

    Article  MathSciNet  Google Scholar 

  51. Witt, C.: Runtime analysis of the (\(\mu \) + 1) EA on simple pseudo-Boolean functions. Evol. Comput. 14, 65–86 (2006)

    Google Scholar 

  52. Witt, C.: Tight bounds on the optimization time of a randomized search heuristic on linear functions. Combin. Probab. Comput. 22, 294–318 (2013)

    Article  MathSciNet  Google Scholar 

  53. Witt, C.: On crossing fitness valleys with majority-vote crossover and estimation-of-distribution algorithms. In: Foundations of Genetic Algorithms, FOGA 2021, pp. 2:1–2:15. ACM (2021)

  54. Whitley, D., Varadarajan, S., Hirsch, R., Mukhopadhyay, A.: Exploration and exploitation without mutation: solving the jump function in \({\Theta (n)}\) time. In: Parallel Problem Solving from Nature, PPSN 2018, Part II, pp. 55–66. Springer (2018)

Download references

Acknowledgements

This work was supported by a public Grant as part of the Investissement d’avenir project, reference ANR-11-LABX-0056-LMH, LabEx LMH and by RFBR and CNRS, Project No. 20-51-15009.

Author information

Authors and Affiliations

Authors

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended version of the paper [6] in the proceedings of GECCO 2020. This version contains all proofs and other details that had to be omitted in the conference version for reasons of space. Also, we have added a new section which proves the lower bounds.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Antipov, D., Doerr, B. & Karavaev, V. A Rigorous Runtime Analysis of the \((1 + (\lambda , \lambda ))\) GA on Jump Functions. Algorithmica 84, 1573–1602 (2022). https://doi.org/10.1007/s00453-021-00907-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00453-021-00907-7

Keywords

Navigation