Skip to main content
Log in

On the Parameterized Complexity of Maximum Degree Contraction Problem

  • Published:
Algorithmica Aims and scope Submit manuscript

Abstract

In the Maximum Degree Contraction problem, the input is a graph G on n vertices, and integers kd, and the objective is to check whether G can be transformed into a graph of maximum degree at most d, using at most k edge contractions. A simple brute-force algorithm that checks all possible sets of edges for a solution runs in time \(n^{\mathcal {O}(k)}\). As our first result, we prove that this algorithm is asymptotically optimal, upto constants in the exponents, under Exponential Time Hypothesis (ETH). Belmonte, Golovach, van’t Hof, and Paulusma studied the problem in the realm of parameterized complexity and proved, among other things, that it admits an FPT algorithm running in time \((d + k)^{2k} \cdot n^{\mathcal {O}(1)} = 2^{\mathcal {O}(k \log (k+d) )} \cdot n^{\mathcal {O}(1)}\), and remains NP-hard for every constant \(d \ge 2\) (Acta Informatica (2014)). We present a different FPT algorithm that runs in time \(2^{\mathcal {O}(dk)} \cdot n^{\mathcal {O}(1)}\). In particular, our algorithm runs in time \(2^{\mathcal {O}(k)} \cdot n^{\mathcal {O}(1)}\), for every fixed d. In the same article, the authors asked whether the problem admits a polynomial kernel, when parameterized by \(k + d\). We answer this question in the negative and prove that it does not admit a polynomial compression unless \(\textsf {NP}\subseteq \textsf {coNP}/poly\).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Notes

  1. The Exponential Time Hypothesis (ETH) is a conjecture stating that, roughly speaking, 3-SAT has no algorithm subexponential in the number of variables. We refer the readers to Chapter 14 in [14] for formal definition and known lower bounds results under this conjecture.

  2. The algorithm colors vertices in the reduced instance with two colors and contracts each connected component in the colored subgraphs.

  3. Since we are looking for an independent set, it is intuitive to add all missing edges in a row or a column of the table. But to simplify our reduction, we remove edges that have both their endpoints in the same row or column. It is easy to verify that this operation is safe.

References

  1. Agarwal, A., Saurabh, S., Tale, P.: On the parameterized complexity of contraction to generalization of trees. Theory Comput. Syst. 63(3), 587–614 (2019)

    Article  MathSciNet  Google Scholar 

  2. Agrawal, A., Fomin, F.V., Lokshtanov, D., Saurabh, S., Tale, P.: Path contraction faster than \(2^{n}\). SIAM J. Discrete Math. 34(2), 1302–1325 (2020)

    Article  MathSciNet  Google Scholar 

  3. Agrawal, A., Kanesh, L., Saurabh, S., Tale, P.: Paths to trees and cacti. In: International Conference on Algorithms and Complexity, pp. 31–42. Springer (2017)

  4. Agrawal, A., Lokshtanov, D., Saurabh, S., Zehavi, M.: Split contraction: the untold story. ACM Transactions Comput. Theory (TOCT) 11(3), 1–22 (2019)

    Article  MathSciNet  Google Scholar 

  5. Alon, N., Yuster, R., Zwick, U.: Color-coding. J. ACM (JACM) 42(4), 844–856 (1995)

    Article  MathSciNet  Google Scholar 

  6. Asano, T., Hirata, T.: Edge-contraction problems. J. Computer Syst. Sci. 26(2), 197–208 (1983)

    Article  MathSciNet  Google Scholar 

  7. Balasundaram, B., Chandramouli, S.S., Trukhanov, S.: Approximation algorithms for finding and partitioning unit-disk graphs into co-k-plexes. Optim. Lett. 4(3), 311–320 (2010)

    Article  MathSciNet  Google Scholar 

  8. Belmonte, R., Golovach, P.A., Hof, P., Paulusma, D.: Parameterized complexity of three edge contraction problems with degree constraints. Acta Informatica 51(7), 473–497 (2014)

    Article  MathSciNet  Google Scholar 

  9. Betzler, N., Bredereck, R., Niedermeier, R., Uhlmann, J.: On bounded-degree vertex deletion parameterized by treewidth. Discrete Appl. Math. 160(1–2), 53–60 (2012)

    Article  MathSciNet  Google Scholar 

  10. Bodlaender, H.L., van Antwerpen-de Fluiter, B.: Reduction algorithms for graphs of small treewidth. Information Comput. 167(2), 86–119 (2001)

    Article  MathSciNet  Google Scholar 

  11. Brouwer, A.E., Veldman, H.J.: Contractibility and NP-completeness. J. Graph Theory 11(1), 71–79 (1987)

    Article  MathSciNet  Google Scholar 

  12. Cai, L., Guo, C.: Contracting few edges to remove forbidden induced subgraphs. In: International symposium on parameterized and exact computation, pp. 97–109. Springer (2013)

  13. Chen, Z.Z., Fellows, M., Fu, B., Jiang, H., Liu, Y., Wang, L., Zhu, B.: A linear kernel for co-path/cycle packing. In: International Conference on Algorithmic Applications in Management, pp. 90–102. Springer (2010)

  14. Cygan, M., Fomin, F.V., Kowalik, L., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, New York (2015)

    Book  Google Scholar 

  15. Dessmark, A., Jansen, K., Lingas, A.: The maximum k-dependent and f-dependent set problem. In: International Symposium on Algorithms and Computation, pp. 88–97. Springer (1993)

  16. Diestel, R.: Graph Theory, 4th Edition, Graduate texts in mathematics, vol. 173. Springer (2012)

  17. Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized complexity. Springer, Verlag (2013)

    Book  Google Scholar 

  18. Fellows, M.R., Guo, J., Moser, H., Niedermeier, R.: A generalization of nemhauser and trotter’s local optimization theorem. J. Computer Syst. Sci. 77(6), 1141–1158 (2011)

    Article  MathSciNet  Google Scholar 

  19. Flum, J., Grohe, M.: Parameterized Complexity Theory. Texts in Theoretical Computer Science. An EATCS Series. Springer (2006)

  20. Fomin, F.V., Lokshtanov, D., Mihajlin, I., Saurabh, S., Zehavi, M.: Computation of Hadwiger Number and Related Contraction Problems: Tight Lower Bounds. In: 47th International Colloquium on Automata, Languages, and Programming (ICALP), pp. 49:1–49:18. Schloss Dagstuhl–Leibniz-Zentrum für Informatik (2020)

  21. Fomin, F.V., Lokshtanov, D., Saurabh, S., Zehavi, M.: Kernelization: Theory of Parameterized Preprocessing. Cambridge University Press, Cambridge (2019)

    MATH  Google Scholar 

  22. Ganian, R., Klute, F., Ordyniak, S.: On structural parameterizations of the bounded-degree vertex deletion problem. In: 35th Symposium on Theoretical Aspects of Computer Science (STACS 2018). Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik (2018)

  23. Golovach, P.A., van’t Hof, P., Paulusma, D.: Obtaining planarity by contracting few edges. Theor. Computer Sci. 476, 38–46 (2013)

    Article  MathSciNet  Google Scholar 

  24. Golovach, P.A., Kaminski, M., Paulusma, D., Thilikos, D.M.: Increasing the minimum degree of a graph by contractions. Theor. Computer Sci. 481, 74–84 (2013)

    Article  MathSciNet  Google Scholar 

  25. Guillemot, S., Marx, D.: A faster FPT algorithm for bipartite contraction. Information Process. Lett. 113(22–24), 906–912 (2013)

    Article  MathSciNet  Google Scholar 

  26. Gunda, S., Jain, P., Lokshtanov, D., Saurabh, S., Tale, P.: On the parameterized approximability of contraction to classes of chordal graphs. In: J. Byrka, R. Meka (eds.) Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques, APPROX/RANDOM 2020, August 17-19, 2020, Virtual Conference, LIPIcs, vol. 176, pp. 51:1–51:19. Schloss Dagstuhl - Leibniz-Zentrum für Informatik (2020). https://doi.org/10.4230/LIPIcs.APPROX/RANDOM.2020.51

  27. Gunda, S., Jain, P., Lokshtanov, D., Saurabh, S., Tale, P.: On the parameterized approximability of contraction to classes of chordal graphs. ACM Trans. Comput. Theory 13(4), 27–40 (2021). https://doi.org/10.1145/3470869

    Article  MathSciNet  Google Scholar 

  28. Heggernes, P., Hof, P.V., Lokshtanov, D., Paul, C.: Obtaining a bipartite graph by contracting few edges. SIAM J. Discrete Math. 27(4), 2143–2156 (2013)

    Article  MathSciNet  Google Scholar 

  29. Heggernes, P., Van’t Hof, P., Lévêque, B., Lokshtanov, D., Paul, C.: Contracting graphs to paths and trees. Algorithmica 68(1), 109–132 (2014)

    Article  MathSciNet  Google Scholar 

  30. Komusiewicz, C., Hüffner, F., Moser, H., Niedermeier, R.: Isolation concepts for efficiently enumerating dense subgraphs. Theor. Computer Sci. 410(38–40), 3640–3654 (2009)

    Article  MathSciNet  Google Scholar 

  31. Krithika, R., Misra, P., Rai, A., Tale, P.: Lossy kernels for graph contraction problems. In: 36th IARCS Annual Conference on Foundations of Software Technology and Theoretical Computer Science (FSTTCS 2016). Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik (2016)

  32. Krithika, R., Misra, P., Tale, P.: An FPT algorithm for contraction to cactus. In: International Computing and Combinatorics Conference, pp. 341–352. Springer (2018)

  33. Lokshtanov, D., Marx, D., Saurabh, S.: Slightly superexponential parameterized problems. SIAM J. Comput. 47(3), 675–702 (2018)

    Article  MathSciNet  Google Scholar 

  34. Lokshtanov, D., Misra, N., Saurabh, S.: On the hardness of eliminating small induced subgraphs by contracting edges. In: International Symposium on Parameterized and Exact Computation, pp. 243–254. Springer (2013)

  35. Lokshtanov, D., Panolan, F., Ramanujan, M.S., Saurabh, S.: Lossy kernelization. In: H. Hatami, P. McKenzie, V. King (eds.) Proceedings of the 49th Annual ACM SIGACT Symposium on Theory of Computing, STOC 2017, Montreal, QC, Canada, June 19-23, 2017, pp. 224–237. ACM (2017). https://doi.org/10.1145/3055399.3055456

  36. Martin, B., Paulusma, D.: The computational complexity of disconnected cut and 2k2-partition. J. comb. Theory Series B 111, 17–37 (2015)

    Article  Google Scholar 

  37. Niedermeier, R.: Invitation to fixed-parameter algorithms. Oxford Lecture Series in Mathematics and Its Applications. Oxford University Press (2006)

  38. Nishimura, N., Ragde, P., Thilikos, D.M.: Fast fixed-parameter tractable algorithms for nontrivial generalizations of vertex cover. Discrete Appl. Math. 152(1–3), 229–245 (2005)

    Article  MathSciNet  Google Scholar 

  39. Saurabh, S., Souza, U.d.S., Tale, P.: On the parameterized complexity of grid contraction. In: 17th Scandinavian Symposium and Workshops on Algorithm Theory (SWAT 2020). Schloss Dagstuhl-Leibniz-Zentrum für Informatik (2020)

  40. Saurabh, S., Souza, U.d.S., Tale, P.: On the parameterized complexity of grid contraction. arXiv preprint arXiv:2008.07967 (2020)

  41. Thomassé, S.: A \(4k^2\) kernel for feedback vertex set. ACM Transactions Algorithms (TALG) 6(2), 1–8 (2010)

    Article  MathSciNet  Google Scholar 

  42. Watanabe, T., Ae, T., Nakamura, A.: On the removal of forbidden graphs by edge-deletion or by edge-contraction. Discrete Appl. Math. 3(2), 151–153 (1981)

    Article  MathSciNet  Google Scholar 

  43. Watanabe, T., Ae, T., Nakamura, A.: On the np-hardness of edge-deletion and-contraction problems. Discrete Appl. Math. 6(1), 63–78 (1983)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

Some part of this project was completed when the second author was a Postdoctoral Fellow at Max Planck Institute for Informatics, Saarland Informatics Campus, Saarbrücken, Germany.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Prafullkumar Tale.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

An extended abstract of this article has been accepted in International Symposium on Parameterized and Exact Computation (IPEC) 2020. Corresponding author: Prafullkumar Tale (prafullkumar.tale@cispa.saarland).

The first author has received funding from the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation programme (Grant Agreement No 819416), and Swarnajayanti Fellowship (No DST/SJF/MSA01/2017-18).

The second author has received funding from the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation programme under Grant Agreement SYSTEMATICGRAPH (No. 725978).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Saurabh, S., Tale, P. On the Parameterized Complexity of Maximum Degree Contraction Problem. Algorithmica 84, 405–435 (2022). https://doi.org/10.1007/s00453-021-00897-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00453-021-00897-6

Keywords

Navigation