Skip to main content
Log in

Approximation in (Poly-) Logarithmic Space

  • Published:
Algorithmica Aims and scope Submit manuscript

Abstract

We develop new approximation algorithms for classical graph and set problems in the RAM model under space constraints. As one of our main results, we devise an algorithm for \(d\text {-}\textsc {Hitting Set}{}\) that runs in time \(n^{{{\,\mathrm{O}\,}}{(d^2 + (d / \epsilon ))}}\), uses \({{\,\mathrm{O}\,}}{((d^2 + (d / \epsilon ))\log {n})}\) bits of space, and achieves an approximation ratio of \({{\,\mathrm{O}\,}}{((d / \epsilon ) n^{\epsilon })}\) for any positive \(\epsilon \le 1\) and any \(d \in {\mathbb {N}}\). In particular, this yields a factor-\({{\,\mathrm{O}\,}}{(\log {n})}\) approximation algorithm which runs in time \(n^{{{\,\mathrm{O}\,}}{(\log {n})}}\) and uses \({{\,\mathrm{O}\,}}{(\log ^2{n})}\) bits of space (for constant d). As a corollary, we obtain similar bounds for \(\textsc {Vertex Cover}{}\) and several graph deletion problems. For bounded-multiplicity problem instances, one can do better. We devise a factor-2 approximation algorithm for \(\textsc {Vertex Cover}{}\) on graphs with maximum degree \(\varDelta\), and an algorithm for computing maximal independent sets, both of which run in time \(n^{{{\,\mathrm{O}\,}}{(\varDelta )}}\) and use \({{\,\mathrm{O}\,}}{(\varDelta \log {n})}\) bits of space. For the more general \(d\text {-}\textsc {Hitting Set}{}\) problem, we devise a factor-d approximation algorithm which runs in time \(n^{{{\,\mathrm{O}\,}}{(d{\delta }^2)}}\) and uses \({{\,\mathrm{O}\,}}{(d {\delta }^2 \log {n})}\) bits of space on set families where each element appears in at most \(\delta\) sets. For \(\textsc {Independent Set}{}\) restricted to graphs with average degree d, we give a factor-(2d) approximation algorithm which runs in polynomial time and uses \({{\,\mathrm{O}\,}}{(\log {n})}\) bits of space. We also devise a factor-\({{\,\mathrm{O}\,}}{(d^2)}\) approximation algorithm for \(\textsc {Dominating Set}{}\) on d-degenerate graphs which runs in time \(n^{{{\,\mathrm{O}\,}}{(\log {n})}}\) and uses \({{\,\mathrm{O}\,}}{(\log ^2{n})}\) bits of space. For d-regular graphs, we show how a known randomized factor-\({{\,\mathrm{O}\,}}{(\log {d})}\) approximation algorithm can be derandomized to run in time \(n^{{{\,\mathrm{O}\,}}{(1)}}\) and use \({{\,\mathrm{O}\,}}{(\log n)}\) bits of space. Our results use a combination of ideas from the theory of kernelization, distributed algorithms and randomized algorithms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Allender, E., Mahajan, M.: The complexity of planarity testing. Inf. Comput. 189(1), 117–134 (2004). https://doi.org/10.1016/j.ic.2003.09.002

    Article  MathSciNet  MATH  Google Scholar 

  2. Alon, N., Moshkovitz, D., Safra, S.: Algorithmic construction of sets for k-restrictions. ACM Trans. Algorithms 2(2), 153–177 (2006). https://doi.org/10.1145/1150334.1150336

    Article  MathSciNet  MATH  Google Scholar 

  3. Alon, N., Spencer, J.H.: The Probabilistic Method, 3rd edn. Wiley, London (2008)

    Book  Google Scholar 

  4. Asano, T., Izumi, T., Kiyomi, M., Konagaya, M., Ono, H., Otachi, Y., Schweitzer, P., Tarui, J., Uehara, R.: Depth-First Search Using O(n) Bits. In: 25th International Symposium on Algorithms and Computation, vol. 8889, pp. 553–564. Springer. https://doi.org/10.1007/978-3-319-13075-0_44

  5. Austrin, P., Khot, S., Safra, M.: Inapproximability of vertex cover and independent set in bounded degree graphs. Theory Comput 7(1), 27–43 (2011). https://doi.org/10.4086/toc.2011.v007a003

    Article  MathSciNet  MATH  Google Scholar 

  6. Banerjee, N., Chakraborty, S., Raman, V., Roy, S., Saurabh, S.: Time-Space Tradeoffs for Dynamic Programming Algorithms in Trees and Bounded Treewidth Graphs. In: Computing and Combinatorics, vol. 9198, pp. 349–360. Springer. https://doi.org/10.1007/978-3-319-21398-9_28

  7. Beame, P.: A general sequential time–space tradeoff for finding unique elements. SIAM J. Comput. 20(2), 270–277 (1991). https://doi.org/10.1137/0220017

    Article  MathSciNet  MATH  Google Scholar 

  8. Berger, B., Rompel, J., Shor, P.W.: Efficient NC algorithms for set cover with applications to learning and geometry. J. Comput. Syst. Sci. 49(3), 454–477 (1994). https://doi.org/10.1016/S0022-0000(05)80068-6

    Article  MathSciNet  Google Scholar 

  9. Biswas, A., Raman, V., Saurabh, S.: Approximation in (Poly-) Logarithmic Space. In: 45th International Symposium on Mathematical Foundations of Computer Science, vol. 170, p. 15. Schloss Dagstuhl – Leibniz-Zentrum für Informatik. https://doi.org/10.4230/LIPIcs.MFCS.2020.16

  10. Borodin, A., Cook, S.A.: A time–space tradeoff for sorting on a general sequential model of computation. SIAM J. Comput. 11(2), 287–297 (1982). https://doi.org/10.1137/0211022

    Article  MathSciNet  MATH  Google Scholar 

  11. Borodin, A., Fischer, M.J., Kirkpatrick, D.G., Lynch, N.A., Tompa, M.: A time–space tradeoff for sorting on non-oblivious machines. J. Comput. Syst. Sci. 22(3), 351–364 (1981). https://doi.org/10.1016/0022-0000(81)90037-4

    Article  MATH  Google Scholar 

  12. Buss, J.F., Goldsmith, J.: Nondeterminism within P. SIAM J. Comput. 22(3), 560–572 (1993). https://doi.org/10.1137/0222038

    Article  MathSciNet  MATH  Google Scholar 

  13. Cai, L., Chen, J., Downey, R.G., Fellows, M.R.: Advice classes of parameterized tractability. Ann. Pure Appl. Logic 84(1), 119–138 (1997). https://doi.org/10.1016/S0168-0072(95)00020-8

    Article  MathSciNet  MATH  Google Scholar 

  14. Carter, J.L., Wegman, M.N.: Universal classes of hash functions. J. Comput. Syst. Sci. 18(2), 143–154 (1979). https://doi.org/10.1016/j.ic.2003.09.0020

    Article  MathSciNet  MATH  Google Scholar 

  15. Chakraborty, S., Mukherjee, A., Raman, V., Satti, S.R.: A Framework for In-place Graph Algorithms. In: 26th Annual European Symposium on Algorithms, vol. 112, pp. 13:1–13:16. Schloss Dagstuhl–Leibniz-Zentrum für Informatik. https://doi.org/10.4230/lipics.esa.2018.13

  16. Chakraborty, S., Raman, V., Satti, S.R.: Biconnectivity, st-numbering and other applications of DFS using O(n) bits. J. Comput. Syst. Sci. 90, 63–79 (2017). https://doi.org/10.1016/j.ic.2003.09.0021

    Article  MathSciNet  MATH  Google Scholar 

  17. Chan, S.O.: Approximation resistance from pairwise-independent subgroups. J. ACM 63(3), 1–32 (2016). https://doi.org/10.1016/j.ic.2003.09.0022

    Article  MathSciNet  MATH  Google Scholar 

  18. Chan, T.M., Munro, J.I., Raman, V.: Selection and Sorting in the “Restore” Model. ACM Transactions on Algorithms 14(2), 1–18 (2018). https://doi.org/10.1145/3168005

  19. Cook, S.A., McKenzie, P.: Problems complete for deterministic logarithmic space. J. Algorithms 8(3), 385–394 (1987). https://doi.org/10.1016/j.ic.2003.09.0023

    Article  MathSciNet  MATH  Google Scholar 

  20. Courcelle, b: The monadic second-order logic of graphs. I. Recognizable sets of finite graphs. Inf. Comput. 85(1), 12–75 (1990). https://doi.org/10.1016/0890-5401(90)90043-H

  21. Cygan, M., Fomin, F..V., Kowalik, L..u, Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized algorithms. Springer, Berlin (2015)

  22. Dinur, I., Steurer, D.: Analytical approach to parallel repetition. In: Proceedings of the 46th Annual Symposium on Theory of Computing, pp. 624–633. ACM Press. https://doi.org/10.1145/2591796.2591884

  23. Elberfeld, M., Jakoby, A., Tantau, T.: Logspace versions of the theorems of Bodlaender and Courcelle. In: Proceedings of the 51st Annual Symposium on Foundations of Computer Science, pp. 143–152. IEEE Computer Society Press. https://doi.org/10.1109/FOCS.2010.21

  24. Elberfeld, M., Kawarabayashi, K.i.: Embedding and canonizing graphs of bounded genus in logspace. In: Proceedings of the 46th Annual Symposium on Theory of Computing, pp. 383–392. ACM Press. https://doi.org/10.1145/2591796.2591865

  25. Elmasry, A., Hagerup, T., Kammer, F.: Space-efficient Basic Graph Algorithms. In: Proceedings of the 32nd Annual Symposium on Theoretical Aspects of Computer Science, vol. 30, pp. 288–301. Schloss Dagstuhl-Leibniz-Zentrum für Informatik. https://doi.org/10.4230/lipics.stacs.2015.288

  26. Fafianie, S., Kratsch, S.: A Shortcut to (Sun)Flowers: Kernels in Logarithmic Space or Linear Time. In: Mathematical Foundations of Computer Science, vol. 9235, pp. 299–310. Springer. https://doi.org/10.1007/978-3-662-48054-0_25

  27. Frederickson, G.N.: Upper bounds for time–space trade-offs in sorting and selection. J. Comput. Syst. Sci. 34(1), 19–26 (1987). https://doi.org/10.1016/j.ic.2003.09.0024

    Article  MathSciNet  MATH  Google Scholar 

  28. Hå stad, J.: Clique is hard to approximate within \({\hat{n}}(1 - {\epsilon })\). Acta Math. 182(1), 105–142 (1999). https://doi.org/10.1007/BF02392825

  29. Hagerup, T.: Space-efficient DFS and applications to connectivity problems: simpler, leaner, faster. Algorithmica 82(4), 1033–1056 (2020). https://doi.org/10.1016/j.ic.2003.09.0025

    Article  MathSciNet  MATH  Google Scholar 

  30. Harris, D.G.: Derandomized concentration bounds for polynomials, and hypergraph maximal independent set. ACM Trans. Algorithms 15(3), 1–29 (2019). https://doi.org/10.1016/j.ic.2003.09.0026

    Article  MathSciNet  MATH  Google Scholar 

  31. Jones, M., Lokshtanov, D., Ramanujan, M.S., Saurabh, S., Suchý, O.: Parameterized complexity of directed Steiner tree on sparse graphs. SIAM J. Discrete Math. 31(2), 1294–1327 (2017). https://doi.org/10.1016/j.ic.2003.09.0027

    Article  MathSciNet  MATH  Google Scholar 

  32. Khot, S., Regev, O.: Vertex cover might be hard to approximate to within \(2-\epsilon\). J. Comput. Syst. Sci. 74(3), 335–349 (2008). https://doi.org/10.1016/j.ic.2003.09.0028

    Article  MathSciNet  MATH  Google Scholar 

  33. Li, J., O’Donnell, R.: Bounding laconic proof systems by solving CSPs in parallel. In: Proceedings of the 29th Annual Symposium on Parallelism in Algorithms and Architectures, pp. 95–100. ACM Press. https://doi.org/10.1145/3087556.3087557

  34. Luby, M.: A simple parallel algorithm for the maximal independent set problem. SIAM J. Comput. 15(4), 1036–1053 (1986). https://doi.org/10.1016/j.ic.2003.09.0029

    Article  MathSciNet  MATH  Google Scholar 

  35. Luby, M., Nisan, N.: A parallel approximation algorithm for positive linear programming. In: Proceedings of the 25th Annual Symposium on Theory of Computing, pp. 448–457. ACM Press. https://doi.org/10.1145/167088.167211

  36. McGregor, A.: Graph stream algorithms: a survey. ACM SIGMOD Rec. 43(1), 9–20 (2014). https://doi.org/10.1145/1150334.11503360

    Article  Google Scholar 

  37. Munro, J.I., Paterson, M.S.: Selection and sorting with limited storage. Theor. Comput. Sci. 12(3), 315–323 (1980). https://doi.org/10.1145/1150334.11503361

    Article  MathSciNet  MATH  Google Scholar 

  38. Munro, J.I., Raman, V.: Selection from read-only memory and sorting with minimum data movement. Theor. Comput. Sci. 165(2), 311–323 (1996). https://doi.org/10.1145/1150334.11503362

    Article  MathSciNet  MATH  Google Scholar 

  39. Pagh, R., Pagter, J.: Optimal time–space trade-offs for non-comparison-based sorting. In: Proceedings of the 13th Annual Symposium on Discrete Algorithms, pp. 9–18. SIAM. https://doi.org/10.5555/545381.545383

  40. Pagter, J., Rauhe, T.: Optimal time-space trade-offs for sorting. In: Proceedings of the 39th Annual Symposium on Foundations of Computer Science, pp. 264–268. IEEE Computer Society Press. https://doi.org/10.1109/SFCS.1998.743455

  41. Papadimitriou, C.H.: Computational Complexity. Addison-Wesley, New York (1994)

    MATH  Google Scholar 

  42. Philip, G., Raman, V., Sikdar, S.: Polynomial kernels for dominating set in graphs of bounded degeneracy and beyond. ACM Trans. Algorithms 9(1), 1–23 (2012). https://doi.org/10.1145/1150334.11503363

    Article  MathSciNet  MATH  Google Scholar 

  43. Polishchuk, V., Suomela, J.: A simple local 3-approximation algorithm for vertex cover. Inf. Process. Lett. 109(12), 642–645 (2009). https://doi.org/10.1145/1150334.11503364

    Article  MathSciNet  MATH  Google Scholar 

  44. Raman, V., Ramnath, S.: Improved upper bounds for time–space trade-offs for selection. Nordic J. Comput. 6(2), 162–180 (1999). https://doi.org/10.1145/1150334.11503365

    Article  MathSciNet  MATH  Google Scholar 

  45. Raman, V., Saurabh, S.: Short cycles make W-hard problems hard: FPT algorithms for W-hard problems in graphs with no short cycles. Algorithmica 52(2), 203–225 (2008). https://doi.org/10.1145/1150334.11503366

    Article  MathSciNet  MATH  Google Scholar 

  46. Reif, J.H.: Symmetric Complementation. J. ACM 31(2), 401–421 (1984). https://doi.org/10.1145/1150334.11503367

    Article  MathSciNet  MATH  Google Scholar 

  47. Reingold, O.: Undirected connectivity in log-space. J. ACM 55(4), 1–24 (2008). https://doi.org/10.1145/1150334.11503368

    Article  MathSciNet  MATH  Google Scholar 

  48. Savitch, W.J.: Relationships between nondeterministic and deterministic tape complexities. J. Comput. Syst. Sci. 4(2), 177–192 (1970). https://doi.org/10.1145/1150334.11503369

    Article  MathSciNet  MATH  Google Scholar 

  49. Serna, M.: Approximating linear programming is log-space complete for P. Inf. Process. Lett. 37(4), 233–236 (1991). https://doi.org/10.4086/toc.2011.v007a0030

    Article  MathSciNet  MATH  Google Scholar 

  50. Tantau, T.: Log space optimization problems and their approximability properties. Theory Comput. Syst. 41(2), 327–350 (2007). https://doi.org/10.4086/toc.2011.v007a0031

    Article  MathSciNet  MATH  Google Scholar 

  51. Trevisan, L.: Parallel approximation algorithms by positive linear programming. Algorithmica 21(1), 72–88 (1998). https://doi.org/10.4086/toc.2011.v007a0032

    Article  MathSciNet  MATH  Google Scholar 

  52. Trevisan, L., Xhafa, F.: The parallel complexity of positive linear programming. Parallel Process. Lett. 08(04), 527–533 (1998). https://doi.org/10.4086/toc.2011.v007a0033

    Article  MathSciNet  Google Scholar 

  53. Vollmer, H.: Introduction to Circuit Complexity. Springer, Berlin (1999)

    Book  Google Scholar 

  54. Yamakami, T.: Uniform-circuit and logarithmic-space approximations of refined combinatorial optimization problems. In: Combinatorial Optimization and Applications, vol. 8287, pp. 318–329. Springer. https://doi.org/10.1007/978-3-319-03780-6_28

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Arindam Biswas.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

A preliminary version [9] of this article appeared in the proceedings of MFCS 2020.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Biswas, A., Raman, V. & Saurabh, S. Approximation in (Poly-) Logarithmic Space. Algorithmica 83, 2303–2331 (2021). https://doi.org/10.1007/s00453-021-00826-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00453-021-00826-7

Keywords

Navigation