Skip to main content
Log in

Improved Analysis of Highest-Degree Branching for Feedback Vertex Set

  • Published:
Algorithmica Aims and scope Submit manuscript

Abstract

Recent empirical evaluations of exact algorithms for Feedback Vertex Set have demonstrated the efficiency of a highest-degree branching algorithm with a degree-based pruning. In this paper, we prove that this empirically fast algorithm runs in \(O(3.460^k n)\) time, where k is the solution size. This improves the previous best \(O(3.619^k n)\)-time deterministic algorithm obtained by Kociumaka and Pilipczuk (Inf Process Lett 114:556–560, 2014. https://doi.org/10.1016/j.ipl.2014.05.001).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Notes

  1. The \(O^*(\cdot )\) notation hides factors polynomial in n. Note that for FVS, any \(O(f(k) n^{O(1)})\)-time FPT algorithm can be improved to \(O(f(k)k^{O(1)}+k^{O(1)}n)\) time by applying a linear-time polynomial-size kernel [16] as a preprocess. We can therefore focus only on the f(k) factor when comparing the running time. For this reason, in this paper, we use the \(O^*(\cdot )\) notation to describe the running time of FPT algorithms for FVS.

References

  1. Becker, A., Bar-Yehuda, R., Geiger, D.: Randomized algorithms for the loop cutset problem. J. Artif. Intell. Res. 12, 219–234 (2000). https://doi.org/10.1613/jair.638

    Article  MathSciNet  MATH  Google Scholar 

  2. Bodlaender, H.L.: On disjoint cycles. Int. J. Found Comput. Sci. 5(1), 59–68 (1994). https://doi.org/10.1142/S0129054194000049

    Article  MATH  Google Scholar 

  3. Burrage, K., Estivill-Castro, V., Fellows, M.R., Langston, M.A., Mac, S., Rosamond, F.A.: The undirected feedback vertex set problem has a poly(k) kernel. IWPEC 2006, 192–202 (2006). https://doi.org/10.1007/11847250_18

    Article  MathSciNet  MATH  Google Scholar 

  4. Cao, Y.: A Naive algorithm for feedback vertex set. In: SOSA 2018, pp. 1:1–1:9 (2018). https://doi.org/10.4230/OASIcs.SOSA.2018.1

  5. Cao, Y., Chen, J., Liu, Y.: On feedback vertex set: new measure and new structures. Algorithmica 73(1), 63–86 (2015). https://doi.org/10.1007/s00453-014-9904-6

    Article  MathSciNet  MATH  Google Scholar 

  6. Chen, J., Fomin, F.V., Liu, Y., Lu, S., Villanger, Y.: Improved algorithms for feedback vertex set problems. J. Comput. Syst. Sci. 74(7), 1188–1198 (2008). https://doi.org/10.1016/j.jcss.2008.05.002

    Article  MathSciNet  MATH  Google Scholar 

  7. Cygan, M., Nederlof, J., Pilipczuk, M., Pilipczuk, M., van Rooij, J.M.M., Wojtaszczyk, J.O.: Solving connectivity problems parameterized by treewidth in single exponential time. FOCS 2011, 150–159 (2011). https://doi.org/10.1109/FOCS.2011.23

    Article  MathSciNet  MATH  Google Scholar 

  8. Cygan, M., Pilipczuk, M., Pilipczuk, M., Wojtaszczyk, J.O.: On multiway cut parameterized above lower bounds. TOCT 5(1), 3:1-3:11 (2013). https://doi.org/10.1145/2462896.2462899

    Article  MathSciNet  MATH  Google Scholar 

  9. Dell, H., Husfeldt, T., Jansen, B.M.P., Kaski, P., Komusiewicz, C., Rosamond, F.A.: The first parameterized algorithms and computational experiments challenge. In: IPEC 2016, pp. 30:1–30:9 (2016). https://doi.org/10.4230/LIPIcs.IPEC.2016.30

  10. Downey, R.G., Fellows, M.R.: Fixed parameter tractability and completeness. In: Complexity Theory: Current Research, pp. 191–225 (1992)

  11. Downey, R.G., Fellows, M.R.: Parameterized Complexity. Monographs in Computer Science. Springer, Berlin (1999). https://doi.org/10.1007/978-1-4612-0515-9

    Book  Google Scholar 

  12. Fomin, F.V., Grandoni, F., Kratsch, D.: A measure & conquer approach for the analysis of exact algorithms. J. ACM 56(5), 1–32 (2009). https://doi.org/10.1145/1552285.1552286

    Article  MathSciNet  MATH  Google Scholar 

  13. Fomin, F.V., Kratsch, D.: Exact Exponential. Algorithms Texts in Theoretical Computer Science. An EATCS Series. Springer, Berlin (2010). https://doi.org/10.1007/978-3-642-16533-7

    Book  Google Scholar 

  14. Gaspers, S.: Exponential Time Algorithms—Structures, Measures, and Bounds. VDM (2010). http://www.cse.unsw.edu.au/~sergeg/SergeBookETA2010_print.pdf

  15. Imanishi, K., Iwata, Y.: Feedback vertex set solver (2016). http://github.com/wata-orz/fvs. Entry to PACE challenge 2016

  16. Iwata, Y.: Linear-time kernelization for feedback vertex set. In: ICALP 2017, pp. 68:1–68:14 (2017). https://doi.org/10.4230/LIPIcs.ICALP.2017.68

  17. Iwata, Y., Kobayashi, Y.: Improved analysis of highest-degree branching for feedback vertex set. In: IPEC 2019, pp. 22:1–22:11 (2019)

  18. Iwata, Y., Wahlström, M., Yoshida, Y.: Half-integrality, LP-branching and FPT algorithms. SIAM J. Comput. 45(4), 1377–1411 (2016). https://doi.org/10.1137/140962838

    Article  MathSciNet  MATH  Google Scholar 

  19. Iwata, Y., Yamaguchi, Y., Yoshida, Y.: 0/1/all CSPs, half-integral A-path packing, and linear-time FPT algorithms. FOCS 2018, 462–473 (2018). https://doi.org/10.1109/FOCS.2018.00051

    Article  MathSciNet  Google Scholar 

  20. Karp, R.M.: Reducibility among combinatorial problems. Complex Comput Comput 1972, 85–103 (1972). https://doi.org/10.1007/978-1-4684-2001-2_9

    Article  MathSciNet  MATH  Google Scholar 

  21. Kiljan, K., Pilipczuk, M.: Experimental evaluation of parameterized algorithms for feedback vertex set. In: SEA 2018, pp. 12:1–12:12 (2018). https://doi.org/10.4230/LIPIcs.SEA.2018.12

  22. Kociumaka, T., Pilipczuk, M.: Faster deterministic feedback vertex set. Inf. Process. Lett. 114(10), 556–560 (2014). https://doi.org/10.1016/j.ipl.2014.05.001

    Article  MathSciNet  MATH  Google Scholar 

  23. Li, J., Nederlof, J.: Detecting feedback vertex sets of size k in O*(2.7\({}^{k}\)) time. In: SODA 2020, pp. 971–989. SIAM (2020). https://doi.org/10.1137/1.9781611975994.58

  24. Lokshtanov, D., Narayanaswamy, N.S., Raman, V., Ramanujan, M.S., Saurabh, S.: Faster parameterized algorithms using linear programming. ACM Trans. Algorithms 11(2), 15:1-15:31 (2014). https://doi.org/10.1145/2566616

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

A preliminary version of this paper has been presented at IPEC 2019 [17]. We would like to thank Yixin Cao for valuable discussions and to thank organizers of PACE challenge 2016 for motivating us to study FVS. This work was supported by JSPS KAKENHI Grants Number JP17K12643, JP16K16010, JP17K19960, and JP18H05291.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yoichi Iwata.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

A Program to Check Lemma 7

A Program to Check Lemma 7

We attach the source code of a python3 program to verify the inequalities (2)–(4) appeared in the proof of Lemma 7. The same source code is also available at https://github.com/wata-orz/FVS_analysis.

figure b

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Iwata, Y., Kobayashi, Y. Improved Analysis of Highest-Degree Branching for Feedback Vertex Set. Algorithmica 83, 2503–2520 (2021). https://doi.org/10.1007/s00453-021-00815-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00453-021-00815-w

Keywords

Navigation