Skip to main content
Log in

Algorithms for Outerplanar Graph Roots and Graph Roots of Pathwidth at Most 2

  • Published:
Algorithmica Aims and scope Submit manuscript

Abstract

Deciding if a graph has a square root is a classical problem, which has been studied extensively both from graph-theoretic and algorithmic perspective. As the problem is NP-complete, substantial effort has been dedicated to determining the complexity of deciding if a graph has a square root belonging to some specific graph class \({{\mathcal {H}}}\). There are both polynomial-time solvable and NP-complete results in this direction, depending on \({{\mathcal {H}}}\). We present a general framework for the problem if \(\mathcal{H}\) is a class of sparse graphs. This enables us to generalize a number of known results and to give polynomial-time algorithms for the cases where \({{\mathcal {H}}}\) is the class of outerplanar graphs and \({{\mathcal {H}}}\) is the class of graphs of pathwidth at most 2.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Notes

  1. The average degree of a graph G is defined as \(\mathrm{ad}(G)=\frac{1}{|V_G|}\sum _{v\in V_G}d_G(v)=\frac{2|E_G|}{|V_G|}\). The maximum average degree of G is then defined as \(\max \{\mathrm{ad}(H)\; |\; H\text { is a subgraph of }G\}\).

References

  1. Barát, J., Hajnal, P.: Operations which preserve path-width at most two. Comb. Probab. Comput. 10, 277–291 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  2. Barát, J., Hajnal, P., Lin, Y., Yang, A.: On the structure of graphs with path-width at most two. Stud. Sci. Math. Hung. 49, 211–222 (2012)

    MathSciNet  MATH  Google Scholar 

  3. Bodlaender, H.L.: Classes of graphs with bounded treewidth. Technical report RUU-CS-86-22. Utrecht University, Utrecht, the Netherlands, Dept. of. Computer Sciences (1986)

  4. Bodlaender, H.L.: A linear-time algorithm for finding tree-decompositions of small treewidth. SIAM J. Comput. 25, 305–1317 (1996)

    Article  MathSciNet  Google Scholar 

  5. Bodlaender, H.L., Kloks, T.: Efficient and constructive algorithms for the pathwidth and treewidth of graphs. J. Algorithms 21, 358–402 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  6. Bodlaender, H.L., Fomin, F.V., Lokshtanov, V., Penninkx, E., Thilikos, D.M., Saurabh, S.: (Meta) Kernelization. J. ACM 63, 44:1–44:69 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  7. Cochefert, M., Couturier, J., Golovach, P.A., Kratsch, D., Paulusma, D., Stewart, A.: Computing square roots of graphs with low maximum degree. Discrete Appl. Math. 248, 93–101 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  8. Cochefert, M., Couturier, J., Golovach, P.A., Kratsch, D., Paulusma, D.: Parameterized algorithms for finding square roots. Algorithmica 74, 602–629 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  9. Courcelle, B.: The monadic second-order logic of graphs III: tree-decompositions, minor and complexity issues. Inf. Théor. Appl. 26, 257–286 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  10. Courcelle, B., Engelfriet, J.: Graph Structure and Monadic Second-Order Logic—A Language-Theoretic Approach, Encyclopedia of mathematics and its applications, vol. 138. Cambridge University Press, Cambridge (2012)

    MATH  Google Scholar 

  11. Diestel, R.: Graph Theory. Graduate Texts in Mathematics, vol. 173, 4th edn. Springer, Berlin (2012)

    MATH  Google Scholar 

  12. Ducoffe G.: Finding cut-vertices in the square roots of a graph. In: Proceedings of WG 2017. Lecture Notes in Computer Science, vol. 10520, pp. 234–248 (2017)

  13. Farzad, B., Karimi, M.: Square-root finding problem in graphs, a complete dichotomy theorem. CoRR arXiv:1210.7684

  14. Farzad, B., Lau, L.C., Le, V.B., Tuy, N.N.: Complexity of finding graph roots with girth conditions. Algorithmica 62, 38–53 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  15. Geller, D.P.: The square root of a digraph. J. Comb. Theory 5, 320–321 (1968)

    Article  MathSciNet  MATH  Google Scholar 

  16. Golovach, P.A., Heggernes, P., Kratsch, D., Lima, P.T., Paulusma, D.: Algorithms for outerplanar graph roots and graph roots of pathwidth at most 2. In: Proceedings of WG 2017. Lecture Notes in Computer Science, vol. 10520, pp. 275–288 (2017)

  17. Golovach, P.A., Heggernes, P., Lindzey, N., McConnell, R.M., dos Santos, V.F., Spinrad, J.P., Szwarcfiter, J.L.: On recognition of threshold tolerance graphs and their complements. Discrete Appl. Math. 216, 171–180 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  18. Golovach, P.A., Kratsch, D., Paulusma, D., Stewart, A.: Finding cactus roots in polynomial time. Theory Comput. Syst. 62, 1409–1426 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  19. Golovach, P.A., Kratsch, D., Paulusma, D., Stewart, A.: A linear kernel for finding square roots of almost planar graphs. Theor. Comput. Sci. 689, 36–47 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  20. Kaplan, H., Shamir, R.: Pathwidth, bandwidth, and completion problems to proper interval graphs with small cliques. SIAM J. Comput. 25, 540–561 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  21. Kinnersley, N.G., Langston, M.A.: Obstruction set isolation for the gate matrix layout problem. Discrete Appl. Math. 54, 169–213 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  22. Lau, L.C.: Bipartite roots of graphs. ACM Trans. Algorithms 2, 178–208 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  23. Lau, L.C., Corneil, D.G.: Recognizing powers of proper interval, split, and chordal graphs. SIAM J. Discrete Math. 18, 83–102 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  24. Le, V.B., Oversberg, A., Schaudt, O.: Polynomial time recognition of squares of ptolemaic graphs and 3-sun-free split graphs. Theor. Comput. Sci. 602, 39–49 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  25. Le, V.B., Oversberg, A., Schaudt, O.: A unified approach for recognizing squares of split graphs. Theor. Comput. Sci. 648, 26–33 (2016)

    Article  MATH  Google Scholar 

  26. Le, V.B., Tuy, N.N.: The square of a block graph. Discrete Math. 310, 734–741 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  27. Le, V.B., Tuy, N.N.: A good characterization of squares of strongly chordal split graphs. Inf. Process. Lett. 111, 120–123 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  28. Lin, Y., Skiena, S.: Algorithms for square roots of graphs. SIAM J. Discrete Math. 8, 99–118 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  29. Milanic, M., Oversberg, A., Schaudt, O.: A characterization of line graphs that are squares of graphs. Discrete Appl. Math. 173, 83–91 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  30. Milanic, M., Schaudt, O.: Computing square roots of trivially perfect and threshold graphs. Discrete Appl. Math. 161, 1538–1545 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  31. Motwani, R., Sudan, M.: Computing roots of graphs is hard. Discrete Appl. Math. 54, 81–88 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  32. Mukhopadhyay, A.: The square root of a graph. J. Comb. Theory 2, 290–295 (1967)

    Article  MathSciNet  MATH  Google Scholar 

  33. Nestoridis, N.V., Thilikos, D.M.: Square roots of minor closed graph classes. Discrete Appl. Math. 168, 34–39 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  34. Ramsey, F.P.: On a problem of formal logic. Proc. Lond. Math. Soc. s2–30(1930), 264–286 (1930)

    Article  MathSciNet  MATH  Google Scholar 

  35. Ross, I.C., Harary, F.: The square of a tree. Bell Syst. Tech. J. 39, 641–647 (1960)

    Article  MathSciNet  Google Scholar 

  36. Sysło, M.M.: Characterizations of outerplanar graphs. Discrete Math. 26, 47–53 (1979)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

We thank Dimitrios M. Thilikos for helpful comments on the generalizations of Theorems 1 and 2 in Sect. 6, and we thank an anonymous reviewer for helpful comments on our paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Petr A. Golovach.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This paper received support from the Research Council of Norway via the project “CLASSIS” (NFR grant 249994) and the Leverhulme Trust via Grant RPG-2016-258. An extended abstract of it appeared in the proceedings of WG 2017 [16].

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Golovach, P.A., Heggernes, P., Kratsch, D. et al. Algorithms for Outerplanar Graph Roots and Graph Roots of Pathwidth at Most 2. Algorithmica 81, 2795–2828 (2019). https://doi.org/10.1007/s00453-019-00555-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00453-019-00555-y

Keywords

Navigation