Skip to main content
Log in

Approximation Algorithms for Intersection Graphs

  • Published:
Algorithmica Aims and scope Submit manuscript

Abstract

We study three complexity parameters that, for each vertex v, are an upper bound for the number of cliques that are sufficient to cover a subset S(v) of its neighbors. We call a graph k-perfectly groupable if S(v) consists of all neighbors, k-simplicial if S(v) consists of the neighbors with a higher number after assigning distinct numbers to all vertices, and k-perfectly orientable if S(v) consists of the endpoints of all outgoing edges from v for an orientation of all edges. These parameters measure in some sense how chordal-like a graph is—the last parameter was not previously considered in literature. The similarity to chordal graphs is used to construct simple polynomial-time approximation algorithms with constant approximation ratio for many NP-hard problems, when restricted to graphs for which at least one of the three complexity parameters is bounded by a constant. As applications we present approximation algorithms with constant approximation ratio for maximum weighted independent set, minimum (independent) dominating set, minimum vertex coloring, maximum weighted clique, and minimum clique partition for large classes of intersection graphs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Notes

  1. The theorem holds also for k-perfectly groupable graphs since they are k-simplicial (Observation 2).

  2. By Observation 2 and Lemma 9 the result concerning the minimum vertex coloring holds also for k-perfectly groupable and k-simplicial graphs. This is also true for the remaining problems but not necessary since we have already shown better approximation results on k-perfectly groupable and k-simplicial graphs.

References

  1. Akcoglu, K., Aspnes, J., DasGupta, B., Kao, M.-Y.: Opportunity cost algorithms for combinatorial auctions. In: Kontoghiorghes, E.J., Rustem, B., Siokos, S. (eds.) Computational Methods in Decision-Making, Economics and Finance. Applied Optimization, vol. 74, pp. 455–479. Kluwer Academic, Dordrecht (2002)

    Chapter  Google Scholar 

  2. Bar-Yehuda, R., Halldórsson, M.M., Naor, J., Shachnai, H., Shapira, I.: Scheduling split intervals. SIAM J. Comput. 36, 1–15 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  3. Bodlaender, H.L.: A linear-time algorithm for finding tree-decompositions of small treewidth. SIAM J. Comput. 25, 1305–1317 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  4. Butman, A., Hermelin, D., Lewenstein, M., Rawitz, D.: Optimization problems in multiple-interval graphs. ACM Trans. Algorithms 6, Article 40 (2010)

    Article  MathSciNet  Google Scholar 

  5. Cerioli, M.R., Faria, L., Ferreira, T.O., Protti, F.: On minimum clique partition and maximum independent set on unit disk graphs and penny graphs: complexity and approximation. Electron. Notes Discrete Math. 18, 73–79 (2004)

    Article  MathSciNet  Google Scholar 

  6. Chan, T.M.: Polynomial-time approximation schemes for packing and piercing fat objects. J. Algorithms 46, 178–189 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  7. Clark, B.N., Colbourn, C.J., Johnson, D.S.: Unit disk graphs. Discrete Math. 86, 165–177 (1990)

    Article  MATH  MathSciNet  Google Scholar 

  8. Courcelle, B.: The monadic second-order logic of graphs. I. Recognizable sets of finite graphs. Inf. Comput. 85, 12–75 (1990)

    Article  MATH  MathSciNet  Google Scholar 

  9. Downey, R.G., Fellows, M.R.: Parameterized Complexity. Springer, New York (1999)

    Book  Google Scholar 

  10. Dumitrescu, A., Pach, J.: Minimum clique partition in unit disk graphs. Graphs Comb. 27, 399–411 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  11. Erlebach, T., Jansen, K., Seidel, E.: Polynomial-time approximation schemes for geometric intersection graphs. SIAM J. Comput. 34, 1302–1323 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  12. Erlebach, T., van Leeuwen, E.J.: Domination in geometric intersection graphs. In: Proc. 8th Latin American Theoretical Informatics Symposium (LATIN 2008). LNCS, vol. 4957, pp. 747–758. Springer, Berlin (2008)

    Chapter  Google Scholar 

  13. Feige, U.: Randomized graph products, chromatic numbers, and the Lovász ϑ function. Combinatorica 17, 79–90 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  14. Flum, J., Grohe, M.: Parameterized Complexity Theory. Springer, Berlin (2006)

    Google Scholar 

  15. Fowler, R.J., Paterson, M.S., Tanimoto, S.L.: Optimal packing and covering in the plane are NP-complete. Inf. Process. Lett. 12, 133–137 (1981)

    Article  MATH  MathSciNet  Google Scholar 

  16. Frank, A.: Some polynomial algorithms for certain graphs and hypergraphs. In: Proc. 5th British Combinatorial Conference, Aberdeen, 1975. Congr. Numer, vol. 15, pp. 211–226 (1976)

    Google Scholar 

  17. Garey, M.R., Johnson, D.S., Stockmeyer, L.: Some simplified NP-complete graph problems. Theor. Comput. Sci. 1, 237–267 (1976)

    Article  MATH  MathSciNet  Google Scholar 

  18. Gavril, F.: Algorithms for minimum coloring, maximum clique, minimum covering by cliques, and maximum independent set of a chordal graph. SIAM J. Comput. 1, 180–187 (1972)

    Article  MATH  MathSciNet  Google Scholar 

  19. Gibson, M., Pirwani, I.A.: Algorithms for dominating set in disk graphs: breaking the logn barrier. In: Proc. 18th Annual European Symposium on Algorithms (ESA 2010). LNCS, vol. 6346, pp. 243–254. Springer, Berlin (2010)

    Google Scholar 

  20. Golumbic, M.C.: Algorithmic Graph Theory and Perfect Graphs. Academic Press, New York (1980)

    MATH  Google Scholar 

  21. Golumbic, M.C.: Algorithmic aspects of intersection graphs and representation hypergraphs. Graphs Comb. 4, 307–321 (1988)

    Article  MATH  MathSciNet  Google Scholar 

  22. Gräf, A.: Coloring and recognizing special graph classes. PhD thesis, Technical Report Musikinformatik und Medientechnik Bericht 20/95, Johannes Gutenberg-Universität Mainz (1995)

  23. Griggs, J.R., West, D.B.: Extremal values of the interval number of a graph. SIAM J. Algebr. Discrete Methods 1, 1–7 (1980)

    Article  MATH  MathSciNet  Google Scholar 

  24. Hoefer, M., Kesselheim, T., Vöcking, B.: Approximation algorithms for secondary spectrum auctions. In: Proc. 23rd ACM Symposium on Parallelism in Algorithms and Architectures (SPAA 11), pp. 177–186 (2011)

    Chapter  Google Scholar 

  25. Hunt, H.B. III, Marathe, M.V., Radhakrishnan, V., Ravi, S.S., Rosenkrantz, D.J., Stearns, R.E.: NC-approximation schemes for NP- and PSPACE-hard problems for geometric graphs. J. Algorithms 26, 238–274 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  26. Hurink, J.L., Nieberg, T.: Approximating minimum independent dominating sets in wireless networks. Inf. Process. Lett. 109, 155–160 (2008)

    Article  MathSciNet  Google Scholar 

  27. Imai, H., Asano, T.: Finding the connected components and a maximum clique of an intersection graph of rectangles in the plane. J. Algorithms 4, 310–323 (1983)

    Article  MATH  MathSciNet  Google Scholar 

  28. Jamison, R.E., Mulder, H.M.: Tolerance intersection graphs on binary trees with constant tolerance 3. Discrete Math. 215, 115–131 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  29. Jiang, M., Zhang, Y.: Parameterized complexity in multiple-interval graphs: partition, separation, irredundancy. In: Proc. 17th International Computing & Combinatorics Conference (COCOON 2011). LNCS, vol. 6842, pp. 62–73. Springer, Berlin (2011)

    Google Scholar 

  30. Kammer, F., Tholey, T., Voepel, H.: Approximation algorithms for intersection graphs. Report 2009-6, Institut für Informatik, Universität Augsburg (2009)

  31. Kammer, F., Tholey, T., Voepel, H.: Approximation algorithms for intersection graphs. In: Proc. 13th International Workshop on Approximation Algorithms for Combinatorial Optimization Problems (APPROX 2010) and 14th International Workshop on Randomization and Computation (RANDOM 2010). LNCS, vol. 6302, pp. 260–273. Springer, Berlin (2010)

    Chapter  Google Scholar 

  32. Malesińska, E.: Graph-theoretical models for frequency assignment problems. PhD thesis, University of Berlin (1997)

  33. Marathe, M.V., Breu, H., Hunt, H.B. III, Ravi, S.S., Rosenkrantz, D.J.: Simple heuristics for unit disk graphs. Networks 25, 59–68 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  34. Nieberg, T., Hurink, J., Kern, W.: Approximation schemes for wireless networks. ACM Trans. Algorithms 4, Article 49 (2008)

    Article  MathSciNet  Google Scholar 

  35. Niedermeier, R.: Invitation to Fixed-Parameter Algorithms. Oxford University Press, New York (2006)

    Book  MATH  Google Scholar 

  36. Papadimitriou, C.H., Yannakakis, M.: Optimization, approximation, and complexity classes. J. Comput. Syst. Sci. 43, 425–440 (1991)

    Article  MATH  MathSciNet  Google Scholar 

  37. Pirwani, I.A., Salavatipour, M.R.: A weakly robust PTAS for minimum clique partition in unit disk graphs. In: Proc. 12th Scandinavian Symposium and Workshops on Algorithms Theory (SWAT 2010). LNCS, vol. 6139, pp. 188–199. Springer, Berlin (2010). Full version to appear in Algorithmica

    Google Scholar 

  38. Rose, D.J., Tarjan, R.E.: Algorithmic aspects of vertex elimination. In: Proc. 7th Annual ACM Symposium on Theory of Computing (STOC 1975), pp. 245–254 (1975)

    Google Scholar 

  39. Tardos, É.: A strongly polynomial algorithm to solve combinatorial linear programs. Oper. Res. 34, 250–256 (1986)

    Article  MATH  MathSciNet  Google Scholar 

  40. Ye, Y., Borodin, A.: Elimination graphs. In: 36th International Colloquium on Automata, Languages and Programming (ICALP 2009). LNCS, vol. 5555, pp. 774–785. Springer, Berlin (2009)

    Chapter  Google Scholar 

  41. Zuckerman, D.: Linear degree extractors and the inapproximability of max clique and chromatic number. Theory Comput. 3, 103–128 (2007)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

The authors thank the anonymous reviewers for their valuable comments and suggestions that helped to improve the readability of the paper. In particular, we are grateful for the hint that the approximation ratio of the minimum clique partition problem can be improved from O(klog2 n) shown in the conference version of this paper to O(klogn) as shown in this paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Torsten Tholey.

Additional information

A preliminary version of this paper appeared in [31].

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kammer, F., Tholey, T. Approximation Algorithms for Intersection Graphs. Algorithmica 68, 312–336 (2014). https://doi.org/10.1007/s00453-012-9671-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00453-012-9671-1

Keywords

Navigation