, Volume 63, Issue 1–2, pp 347–362 | Cite as

Improved Approximation Algorithms for Data Migration

  • Samir Khuller
  • Yoo-Ah Kim
  • Azarakhsh MalekianEmail author


Our work is motivated by the need to manage data items on a collection of storage devices to handle dynamically changing demand. As demand for data items changes, for performance reasons, the system needs to automatically respond to changes in demand for different data items. The problem of computing a migration plan among the storage devices is called the data migration problem. This problem was shown to be NP-hard, and an approximation algorithm achieving an approximation factor of 9.5 was presented for the half-duplex communication model in Khuller, Kim and Wan (Algorithms for data migration with cloning. SIAM J. Comput. 33(2):448–461, 2004). In this paper we develop an improved approximation algorithm that gives a bound of 6.5+o(1) using new ideas. In addition, we develop better algorithms using external disks and get an approximation factor of 4.5 using external disks. We also consider the full duplex communication model and develop an improved bound of 4+o(1) for this model, with no external disks.


Data migration Edge coloring Approximation algorithms 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Anderson, E., Hall, J., Hartline, J., Hobbes, M., Karlin, A., Saia, J., Swaminathan, R., Wilkes, J.: An experimental study of data migration algorithms. In: Workshop on Algorithm Engineering, London, UK, 2001, pp. 145–158. Springer, Berlin (2001) CrossRefGoogle Scholar
  2. 2.
    Aggarwal, G., Motwani, R., Zhu, A.: The load rebalancing problem. In: Symposium on Parallel Algorithms and Architectures, pp. 258–265 (2003) Google Scholar
  3. 3.
    Baev, I.D., Rajaraman, R.: Approximation algorithms for data placement in arbitrary networks. In: Proc. of ACM-SIAM Symposium on Discrete Algorithms, pp. 661–670 (2001) Google Scholar
  4. 4.
    Bondy, J.A., Murty, U.S.R.: Graph Theory with Applications. American Elsevier, New York (1977) Google Scholar
  5. 5.
    Gandhi, R., Mestre, J.: Combinatorial algorithms for data migration to minimize average completion time. Algorithmica 54(1), 54–71 (2009) MathSciNetzbMATHCrossRefGoogle Scholar
  6. 6.
    Golubchik, L., Khanna, S., Khuller, S., Thurimella, R., Zhu, A.: Approximation algorithms for data placement on parallel disks. In: Proc. of ACM-SIAM Symposium on Discrete Algorithms, Washington, D.C., USA, 2000, pp. 661–670. Society of Industrial and Applied Mathematics, Philadelphia (2000) Google Scholar
  7. 7.
    Golubchik, L., Khuller, S., Kim, Y., Shargorodskaya, S., Wan, Y.: Data migration on parallel disks: algorithms and evaluation. Algorithmica 45(1), 137–158 (2006) MathSciNetzbMATHCrossRefGoogle Scholar
  8. 8.
    Graham, R.L., Grahamt, R.L.: Bounds on multiprocessing timing anomalies. SIAM J. Appl. Math. 17, 416–429 (1969) MathSciNetzbMATHCrossRefGoogle Scholar
  9. 9.
    Guha, S., Munagala, K.: Improved algorithms for the data placement problem, 2002. In: Proc. of ACM-SIAM Symposium on Discrete Algorithms, San Fransisco, CA, USA, 2002, pp. 106–107. Society of Industrial and Applied Mathematics, Philadelphia (2002) Google Scholar
  10. 10.
    Hall, J., Hartline, J., Karlin, A., Saia, J., Wilkes, J.: On algorithms for efficient data migration. In: Proc. of ACM-SIAM Symposium on Discrete Algorithms, pp. 620–629 (2001) Google Scholar
  11. 11.
    Kashyap, S., Khuller, S.: Algorithms for non-uniform size data placement on parallel disks. J. Algorithms 60(2), 144–167 (2006) MathSciNetzbMATHCrossRefGoogle Scholar
  12. 12.
    Kashyap, S., Khuller, S., Wan, Y.C., Golubchik, L.: Fast reconfiguration of data placement in parallel disks. In: 2006 ALENEX Conference, Jan. 2006 Google Scholar
  13. 13.
    Khuller, S., Kim, Y., Wan, Y.C.: On generalized gossiping and broadcasting. In: European Symposia on Algorithms, Budapest, Hungary, 2003, pp. 373–384. Springer, Berlin (2003) Google Scholar
  14. 14.
    Khuller, S., Kim, Y.A., Wan, Y.C.: Algorithms for data migration with cloning. SIAM J. Comput. 33(2), 448–461 (2004) MathSciNetzbMATHCrossRefGoogle Scholar
  15. 15.
    Kim, Y.: Data migration to minimize the average completion time. In: Proc. of ACM-SIAM Symposium on Discrete Algorithms, pp. 97–98 (2003) Google Scholar
  16. 16.
    Meyerson, A., Munagala, K., Plotkin, S.A.: Web caching using access statistics. In: Symposium on Discrete Algorithms, pp. 354–363 (2001) Google Scholar
  17. 17.
    Shachnai, H., Tamir, T.: Polynomial time approximation schemes for class-constrained packing problems. In: Workshop on Approximation Algorithms. LNCS, vol. 1913, pp. 238–249 (2000) Google Scholar
  18. 18.
    Shachnai, H., Tamir, T.: On two class-constrained versions of the multiple knapsack problem. Algorithmica 29, 442–467 (2001) MathSciNetzbMATHCrossRefGoogle Scholar
  19. 19.
    Shannon, C.E.: A theorem on colouring lines of a network. J. Math. Phys. 28, 148–151 (1949) MathSciNetzbMATHGoogle Scholar
  20. 20.
    Shmoys, D.B., Tardos, E.: An approximation algorithm for the generalized assignment problem. Math. Program., Ser. A 62, 461–474 (1993) MathSciNetzbMATHCrossRefGoogle Scholar
  21. 21.
    Vizing, V.G.: On an estimate of the chromatic class of a p-graph. Diskretn. Anal. 3, 25–30 (1964) (Russian) MathSciNetGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  1. 1.Department of Computer ScienceUniversity of MarylandCollege ParkUSA
  2. 2.Department of Computer Science and EngineeringUniversity of ConnecticutStorrsUSA

Personalised recommendations