Skip to main content
Log in

Fast Evaluation of Interlace Polynomials on Graphs of Bounded Treewidth

  • Published:
Algorithmica Aims and scope Submit manuscript

Abstract

We consider the multivariate interlace polynomial introduced by Courcelle (Electron. J. Comb. 15(1), 2008), which generalizes several interlace polynomials defined by Arratia, Bollobás, and Sorkin (J. Comb. Theory Ser. B 92(2):199–233, 2004) and by Aigner and van der Holst (Linear Algebra Appl., 2004). We present an algorithm to evaluate the multivariate interlace polynomial of a graph with n vertices given a tree decomposition of the graph of width k. The best previously known result (Courcelle, Electron. J. Comb. 15(1), 2008) employs a general logical framework and leads to an algorithm with running time f(k)⋅n, where f(k) is doubly exponential in k. Analyzing the GF(2)-rank of adjacency matrices in the context of tree decompositions, we give a faster and more direct algorithm. Our algorithm uses \(2^{3k^{2}+O(k)}\cdot n\) arithmetic operations and can be efficiently implemented in parallel.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Aigner, M., van der Holst, H.: Interlace polynomials. Linear Algebra Appl. 377, 11–30 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  2. Andrzejak, A.: An algorithm for the Tutte polynomials of graphs of bounded treewidth. Discrete Math. 190(1–3), 39–54 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  3. Arratia, R., Bollobás, B., Coppersmith, D., Sorkin, G.B.: Euler circuits and DNA sequencing by hybridization. Discrete Appl. Math. 104(1–3), 63–96 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  4. Arratia, R., Bollobás, B., Sorkin, G.B.: The interlace polynomial of a graph. J. Comb. Theory Ser. B 92(2), 199–233 (2004)

    Article  MATH  Google Scholar 

  5. Arratia, R., Bollobás, B., Sorkin, G.B.: A two-variable interlace polynomial. Combinatorica 24(4), 567–584 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  6. Averbouch, I., Godlin, B., Makowsky, J.A.: A most general edge elimination polynomial. In: Broersma, H., Erlebach, T., Friedetzky, T., Paulusma, D. (eds) WG. Lecture Notes in Computer Science, vol. 5344, pp. 31–42 (2008)

  7. Bläser, M., Hoffmann, C.: On the complexity of the interlace polynomial. In: Albers, S., Weil, P. (eds.) 25th International Symposium on Theoretical Aspects of Computer Science (STACS 2008), pp. 97–108, Dagstuhl, Germany, 2008. Internationales Begegnungs- und Forschungszentrum für Informatik (IBFI), Schloss Dagstuhl, Germany

  8. Bodlaender, H.L.: A linear-time algorithm for finding tree-decompositions of small treewidth. SIAM J. Comput. 25(6), 1305–1317 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  9. Bodlaender, H.L.: A partial k-arboretum of graphs with bounded treewidth. Theor. Comput. Sci. 209(1–2), 1–45 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  10. Bodlaender, H.L., Koster, A.M.C.A.: Combinatorial optimization on graphs of bounded treewidth. Comput. J. 51(3), 255–269 (2008)

    Article  MathSciNet  Google Scholar 

  11. Bollobás, B.: Evaluations of the circuit partition polynomial. J. Comb. Theory Ser. B 85(2), 261–268 (2002)

    Article  MATH  Google Scholar 

  12. Bollobás, B., Riordan, O.: A Tutte polynomial for coloured graphs. Comb. Probab. Comput. 8(1–2), 45–93 (1999)

    Article  MATH  Google Scholar 

  13. Bouchet, A.: Isotropic systems. Eur. J. Comb. 8(3), 231–244 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  14. Bouchet, A.: Graphic presentations of isotropic systems. J. Comb. Theory Ser. B 45(1), 58–76 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  15. Bouchet, A.: Tutte Martin polynomials and orienting vectors of isotropic systems. Graphs Comb. 7, 235–252 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  16. Bouchet, A.: Graph polynomials derived from Tutte–Martin polynomials. Discrete Math. 302(13), 32–38 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  17. Bürgisser, P., Clausen, M., Shokrollahi, M.A.: Algebraic Complexity Theory. Grundlehren der Mathematischen Wissenschaften/A Series of Comprehensive Studies in Mathematics, vol. 315. Springer, Berlin (1997)

    MATH  Google Scholar 

  18. Bénard, D., Bouchet, A., Duchamp, A.: On the Martin and Tutte polynomials. Technical report, Département d’Infornmatique, Université du Maine, Le Mans, France (1997)

  19. Courcelle, B.: A multivariate interlace polynomial and its computation for graphs of bounded clique-width. Electron. J. Comb. 15(1) (2008)

  20. Courcelle, B., Olariu, S.: Upper bounds to the clique width of graphs. Discrete Appl. Math. 101(1–3), 77–114 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  21. Courcelle, B., Oum, S.-i.: Vertex-minors, monadic second-order logic, and a conjecture by seese. J. Comb. Theory, Ser. B 97(1), 91–126 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  22. Courcelle, B., Makowsky, J.A., Rotics, U.: On the fixed parameter complexity of graph enumeration problems definable in monadic second-order logic. Discrete Appl. Math. 108(1–2), 23–52 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  23. Danielsen, L.E., Parker, M.G.: Interlace polynomials: Enumeration, unimodality, and connections to codes. Preprint (2008). arXiv:0804.2576v1

  24. Downey, R.G., Fellows, M.R.: Parameterized Complexity. Springer, Berlin (1999)

    Book  Google Scholar 

  25. Ellis-Monaghan, J.A.: New results for the Martin polynomial. J. Comb. Theory Ser. B 74(2), 326–352 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  26. Ellis-Monaghan, J.A.: Martin polynomial miscellanea. In: Proceedings of the 30th Southeastern International Conference on Combinatorics, Graph Theory, and Computing, pp. 19–31, Boca Raton, FL, 1999

  27. Ellis-Monaghan, J.A., Sarmiento, I.: Isotropic systems and the interlace polynomial. Preprint (2006). arXiv:math/0606641v2

  28. Ellis-Monaghan, J.A., Sarmiento, I.: Distance hereditary graphs and the interlace polynomial. Comb. Probab. Comput. 16(6), 947–973 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  29. Fomin, F.V., Golovach, P.A., Lokshtanov, D., Saurabh, S.: Intractability of clique-width parameterizations. SIAM J. Comput. 39(5), 1941–1956 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  30. Jaeger, F.: On Tutte polynomials and cycles of plane graphs. J. Comb. Theory Ser. B 44(2), 127–146 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  31. JaJa, J.: Introduction to Parallel Algorithms. Addison-Wesley, Reading (1992)

    MATH  Google Scholar 

  32. Kloks, T.: Treewidth. Computations and Approximations. Lecture Notes in Computer Science, vol. 842. Springer, Berlin (1994)

    MATH  Google Scholar 

  33. Las Vergnas, M.: Eulerian circuits of 4-valent graphs imbedded in surfaces. In: Algebraic Methods in Graph Theory, Szeged, Hungary, 1978. Colloq. Math. Soc. János Bolyai, vol. 25, pp. 451–477. North-Holland, Amsterdam (1981)

    Google Scholar 

  34. Las Vergnas, M.: Le polynôme de Martin d’un graphe eulerian. Ann. Discrete Math. 17, 397–411 (1983)

    MathSciNet  MATH  Google Scholar 

  35. Las Vergnas, M.: On the evaluation at (3,3) of the Tutte polynomial of a graph. J. Comb. Theory Ser. B 45(3), 367–372 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  36. Lecerf, G., Schost, É.: Fast multivariate power series multiplication in characteristic zero. SADIO Electron. J. 5(1) (2003)

  37. Leighton, F.T.: Introduction to Parallel Algorithms and Architectures: Arrays, Trees, Hypercubes. Morgan Kaufmann, San Mateo (1992)

    MATH  Google Scholar 

  38. Martin, P.: Enumérations Eulériennes dans le multigraphes et invariants de Tutte–Grothendieck. PhD thesis, Grenoble, France (1977)

  39. Negami, S.: Polynomial invariants of graphs. Trans. Am. Math. Soc. 299, 601–622 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  40. Noble, S.D.: Evaluating the Tutte polynomial for graphs of bounded tree-width. Comb. Probab. Comput. 7(3), 307–321 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  41. Oum, S.-i.: Rank-width and vertex-minors. J. Comb. Theory Ser. B 95(1), 79–100 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  42. Oum, S.-i., Seymour, P.D.: Approximating clique-width and branch-width. J. Comb. Theory, Ser. B 96(4), 514–528 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  43. Riera, C., Parker, M.G.: One and two-variable interlace polynomials: A spectral interpretation. In: Coding and Cryptography. International Workshop, WCC 2005, Bergen, Norway, March 14–18, 2005. Lecture Notes in Computer Science, vol. 3969, pp. 397–411. Springer, Berlin (2006)

    Google Scholar 

  44. Traldi, L.: Binary nullity, Euler circuits and interlace polynomials. Preprint (2009). arXiv:0903.4405v1

  45. Traldi, L.: Weighted interlace polynomials. Comb. Probab. Comput. 19(1), 133–157 (2010)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christian Hoffmann.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bläser, M., Hoffmann, C. Fast Evaluation of Interlace Polynomials on Graphs of Bounded Treewidth. Algorithmica 61, 3–35 (2011). https://doi.org/10.1007/s00453-010-9439-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00453-010-9439-4

Keywords

Navigation