Baier, G.: Flows with path restrictions. Ph.D. Thesis, TU Berlin (2003)
Cormen, T.H., Leiserson, C.E., Rivest, R.L., Stein, C.: Introduction to Algorithms, 2nd edn. MIT Press, Cambridge (2001)
MATH
Google Scholar
Dahlhaus, E., Johnson, D.S., Papadimitriou, C.H., Seymour, P.D., Yannakakis, M.: The complexity of multiterminal cuts. SIAM J. Comput. 23, 864–894 (1994)
MATH
Article
MathSciNet
Google Scholar
Droste, S., Jansen, T., Wegener, I.: On the analysis of the (1+1) evolutionary algorithm. Theor. Comput. Sci. 276, 51–81 (2002)
MATH
Article
MathSciNet
Google Scholar
Duarte, A., Sánchez, Á., Fernández, F., Cabido, R.: A low-level hybridization between memetic algorithm and VNS for the max-cut problem. In: Proc. of GECCO ’05, pp. 999–1006 (2005)
Friedrich, T., He, J., Hebbinghaus, N., Neumann, F., Witt, C.: Approximating covering problems by randomized search heuristics using multi-objective models. In: Proc. of GECCO ’07, pp. 797–804 (2007)
Giel, O.: Expected runtimes of a simple multi-objective evolutionary algorithm. In: Proc. of CEC ’03, pp. 1918–1925. IEEE Press, New York (2003)
Google Scholar
Giel, O., Wegener, I.: Evolutionary algorithms and the maximum matching problem. In: Proc. of STACS ’03, pp. 415–426 (2003)
Horoba, C., Neumann, F.: Benefits and drawbacks for the use of epsilon-dominance in evolutionary multi-objective optimization. In: Proc. of GECCO ’08, pp. 641–648 (2008)
Jansen, T., Wegener, I.: Evolutionary algorithms—how to cope with plateaus of constant fitness and when to reject strings of the same fitness. IEEE Trans. Evol. Comput. 5(6), 589–599 (2001)
Article
Google Scholar
Korte, B., Vygen, J.: Combinatorial Optimization: Theory and Algorithms, 3rd edn. Springer, Berlin (2005)
Google Scholar
Laumanns, M., Thiele, L., Deb, K., Zitzler, E.: Combining convergence and diversity in evolutionary multiobjective optimization. Evol. Comput. 10(3), 263–282 (2002)
Article
Google Scholar
Laumanns, M., Thiele, L., Zitzler, E.: Running time analysis of multiobjective evolutionary algorithms on pseudo-boolean functions. IEEE Trans. Evol. Comput. 8(2), 170–182 (2004)
Article
Google Scholar
Liang, K.-H., Yao, X., Newton, C.S., Hoffman, D.: A new evolutionary approach to cutting stock problems with and without contiguity. Comput. Oper. Res. 29(12), 1641–1659 (2002)
Article
MathSciNet
Google Scholar
Neumann, F.: Expected runtimes of a simple evolutionary algorithm for the multi-objective minimum spanning tree problem. Eur. J. Oper. Res. 181(3), 1620–1629 (2007)
MATH
Article
Google Scholar
Neumann, F., Reichel, J.: Approximating minimum multicuts by evolutionary multi-objective algorithms. In: Proc. of PPSN’08, pp. 72–81 (2008)
Neumann, F., Reichel, J., Skutella, M.: Computing minimum cuts by randomized search heuristics. In: Proc. of GECCO ’08, pp. 779–786 (2008)
Neumann, F., Wegener, I.: Minimum spanning trees made easier via multi-objective optimization. Nat. Comput. 5(3), 305–319 (2006)
MATH
Article
MathSciNet
Google Scholar
Neumann, F., Wegener, I.: Randomized local search, evolutionary algorithms, and the minimum spanning tree problem. Theor. Comput. Sci. 378(1), 32–40 (2007)
MATH
Article
MathSciNet
Google Scholar
Puchinger, J., Raidl, G.R., Koller, G.: Solving a real-world glass cutting problem. In: Proc. of EvoCOP ’04, pp. 165–176. Springer, Berlin (2004)
Google Scholar
Reichel, J., Skutella, M.: Evolutionary algorithms and matroid optimization problems. In: Proc. of GECCO ’07, pp. 947–954 (2007)
Reichel, J., Skutella, M.: On the size of weights in randomized search heuristics. In: Proc. of FOGA ’09, pp. 21–28. ACM, New York (2009)
Chapter
Google Scholar
Siarry, P., Michalewicz, Z. (eds.): Advances in Metaheuristics for Hard Optimization. Natural Computing Series. Springer, Berlin (2008)
MATH
Google Scholar
Witt, C.: Worst-case and average-case approximations by simple randomized search heuristics. In: Proc. of STACS ’05, pp. 44–56 (2005)