Skip to main content
Log in

Solid-state fermentation using wheat bran to produce glucose syrup and functional cereal bars

  • Research Paper
  • Published:
Bioprocess and Biosystems Engineering Aims and scope Submit manuscript

Abstract

Wheat bran is one of the most abundant by-products from grain milling, which can be used as substrate for solid-state fermentation (SSF) to obtain enzymes able to convert this agro-industrial waste into glucose syrup, which in turn can be applied for the production of different food products. The present study aimed to determine centesimal composition of wheat bran, obtain enzymatic extract that converts wheat bran into wheat glucose syrup (WGS), produce rice flakes cereal bars (RFCB), and evaluate their nutritional composition and the presence of functional compounds, as well as their antioxidant potential. Determination of centesimal composition of wheat bran demonstrated its nutritional potential. Enzymatic extract was obtained and it converted wheat bran into WGS, which were applied to rice flakes producing RFCB. These cereal bars proved to be a source of dietary fiber (1.8 g) and soluble protein (7.2 g) while RCFB produced with corn glucose syrup did not present these nutritional components. In addition, RFCB produced with WGS showed polyphenolic compounds, among them flavonoids, which exhibited antioxidant activity by DPPH and ABTS radical scavenging (47.46% and 711.89 μM Trolox Equivalent/g, respectively), and iron ion reduction (71.70 μM Trolox equivalent/g). Final product showed a decrease in caloric value and sodium content. Therefore, the present study showed that the bioprocess of SSF yields a nutritional, ecological, and functional food product, which might be of great interest for food industry, adding nutritional and functional value to a well-stablished product.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability

The authors declare that the data supporting the findings of this study are available within the article and there is no hidden or supplementary data.

References

  1. Sisti L, Gioia C, Totaro G, Verstichel S, Cartabia M, Camere S, Celli A (2021) Valorization of wheat bran agro-industrial byproduct as an upgrading filler for mycelium-based composite materials. Ind Crops Prod 170:113742. https://doi.org/10.1016/j.indcrop.2021.113742

    Article  CAS  Google Scholar 

  2. Saini P, Islam M, Das R, Shekhar S, Sinha ASK, Prasad K (2023) Wheat bran as potential source of dietary fiber: prospects and challenges. J Food Compos Anal 116:105030. https://doi.org/10.1016/j.jfca.2022.105030

    Article  CAS  Google Scholar 

  3. Cesaretti A, Montegiove N, Calzoni E, Leonardi L, Emiliani C (2020) Protein hydrolysates: from agricultural waste biomasses to high added-value products (minireview). AgroLife Sci J 9(1):79–87

    Google Scholar 

  4. Nirmala Prasadi VP, Joye IJ (2020) Dietary fibre from whole grains and their benefits on metabolic health. Nutrients 12(10):3045. https://doi.org/10.3390/nu12103045

    Article  CAS  Google Scholar 

  5. Wu J, Ren L, Zhao N, Wu T, Liu R, Sui W, Zhang M (2022) Solid-state fermentation by Rhizopus oryzae improves flavor of wheat bran for application in food. J Cereal Sci 107:103536. https://doi.org/10.1016/j.jcs.2022.103536

    Article  CAS  Google Scholar 

  6. Dahiya D, Sharma H, Rai AK, Nigam PS (2022) Application of biological systems and processes employing microbes and algae to reduce, recycle, reuse (3Rs) for the sustainability of circular bioeconomy. AIMS Microbiol 8(1):83–102. https://doi.org/10.3934/microbiol.2022008

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Shirahigue LD, Ceccato-Antonini SR (2020) Agro-industrial wastes as sources of bioactive compounds for food and fermentation industries. Cienc Rural 50(4):e20190857. https://doi.org/10.1590/0103-8478cr20190857

    Article  CAS  Google Scholar 

  8. Azevedo ARG, Amin M, Hadzima-Nyardo M, Agwa IS, Zeyad AM, Tayeh BA, Adesina A (2022) Possibilities for the application of agro-industrial wastes in cementitious materials: a brief review of the Brazilian perspective. Clean Mater 3:100040. https://doi.org/10.1016/j.clema.2021.100040

    Article  CAS  Google Scholar 

  9. Naik B, Kumar V, Rizwanuddin S, Chauhan M, Gupta AK, Rustagi S, Kumar V, Gupta S (2023) Agro-industrial waste: a cost-effective and eco-friendly substrate to produce amylase. Food Prod Process Nutr 5:30. https://doi.org/10.1186/s43014-023-00143-2

    Article  Google Scholar 

  10. Boodhoo KVK, Flickinger MC, Woodley JM, Emanuelsson EAC (2022) Bioprocess intensification: a route to efficient and sustainable biocatalytic transformations for the future. Chem Eng Process Process Intensif 172:108793. https://doi.org/10.1016/j.cep.2022.108793

    Article  CAS  Google Scholar 

  11. Sakarika M, Stavropoulos K, Kopsahelis A, Koutra E, Zafiri C, Kornaros M (2020) Two-stage anaerobic digestion harnesses more energy from the co-digestion of end-of-life dairy products with agro-industrial waste compared to the single-stage process. Biochem Eng J 153:107404. https://doi.org/10.1016/j.bej.2019.107404

    Article  CAS  Google Scholar 

  12. Hansen GH, Lübeck M, Frisvad JC, Lübeck PS, Andersen B (2015) Production of cellulolytic enzymes from ascomycetes: comparison of solid state and submerged fermentation. Process Biochem 50(9):1327–1341. https://doi.org/10.1016/j.procbio.2015.05.017

    Article  CAS  Google Scholar 

  13. Tanasković SJ, Šekuljica N, Jovanović J, Gazikalović I, Grbavčić S, Đorđević N, Sekulić MV, Hao J, Luković N, Knežević-Jugović Z (2021) Upgrading of valuable food component contents and anti-nutritional factors depletion by solid-state fermentation: a way to valorize wheat bran for nutrition. J Cereal Sci 99:103159. https://doi.org/10.1016/j.jcs.2020.103159

    Article  CAS  Google Scholar 

  14. Namboodiri MMT, Paul T, Medisetti RMN, Pakshirajan K, Narayanasamy S, Pugazhenthi G (2022) Solid state fermentation of rice straw using Penicillium citrinum for chitosan production and application as nanobiosorbent. Bioresour Technol Rep 18:101005. https://doi.org/10.1016/j.biteb.2022.101005

    Article  CAS  Google Scholar 

  15. Egbune EO, Avwioroko OJ, Anigboro AA, Aganbi E, Amata A-I, Tonukari NJ (2022) Characterization of a surfactant-stable α-amylase produced by solid-state fermentation of cassava (Manihot esculenta Crantz) tubers using Rhizopus oligosporus: kinetics, thermal inactivation thermodynamics and potential application in laundry industries. Biocatal Agric Biotechnol 39:102290. https://doi.org/10.1016/j.bcab.2022.102290

    Article  CAS  Google Scholar 

  16. Chavan S, Yadav B, Atmakuri A, Tyagi RD, Wong JWC, Drogui P (2022) Bioconversion of organic wastes into value-added products: a review. Bioresour Technol. https://doi.org/10.1016/j.biortech.2021.126398

    Article  PubMed  Google Scholar 

  17. Yafetto L (2022) Application of solid-state fermentation by microbial biotechnology for bioprocessing of agro-industrial wastes from 1970 to 2020: a review and bibliometric analysis. Heliyon 8(3):e09173. https://doi.org/10.1016/j.heliyon.2022.e09173

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Asadollahzadeh M, Mohammadi M, Lennartsson PR (2023) 2—Fungal biotechnology. In: Taherzadeh MJ, Ferreira JA, Pandey A (eds) Current developments in biotechnology and bioengineering: filamentous fungi biorefinery, 1st edn. Elsevier, Amsterdam, pp 31–66

    Chapter  Google Scholar 

  19. Yadav P, AnuKumarTiwari S, Kumar V, Singh D, Kumar S, Manisha Malik V, Singh B (2022) Sugarcane bagasse: an important lignocellulosic substrate for production of enzymes and biofuels. Biomass Conv Bioref. https://doi.org/10.1007/s13399-022-02791-9

    Article  Google Scholar 

  20. Naeem M, Imran M, Latif S, Ashraf A, Hussain N, Boczkaj G, Smułek W, Jesionowski T, Bilal M (2023) Multifunctional catalyst-assisted sustainable reformation of lignocellulosic biomass into environmentally friendly biofuel and value-added chemicals. Chemosphere 330:138633. https://doi.org/10.1016/j.chemosphere.2023.138633

    Article  CAS  PubMed  Google Scholar 

  21. Salim AA, Grbavčić S, Šekuljica N, Stefanović A, Tanasković SJ, Luković N, Knežević-Jugović Z (2017) Production of enzymes by a newly isolated Bacillus sp. TMF-1 in solid state fermentation on agricultural by-products: the evaluation of substrate pretreatment methods. Bioresour Technol 228:193–200. https://doi.org/10.1016/j.biortech.2016.12.081

    Article  CAS  PubMed  Google Scholar 

  22. Paulino BN, Molina G, Pastore GM, Bicas JL (2021) Current perspectives in the biotechnological production of sweetening syrups and polyols. Curr Opin Food Sci 41:36–43. https://doi.org/10.1016/j.cofs.2021.02.004

    Article  CAS  Google Scholar 

  23. Barros RRO, Becarelli P, Oliveira RA, Tognotti L, Bon EPS (2019) Triticum spelta straw hydrothermal pretreatment for the production of glucose syrups via enzymatic hydrolysis. Biochem Eng J 151:107340. https://doi.org/10.1016/j.bej.2019.107340

    Article  CAS  Google Scholar 

  24. Rigo D, Gayeski L, Tres GA, Camera FD, Zeni J, Valduga E, Cansian RL, Backes GT (2021) Produção microbiológica de enzimas: uma revisão [microbiological production of enzymes: a review]. Braz J Dev 7(1):9232–9254

    Article  Google Scholar 

  25. Scholliers P (2015) Convenience foods. What, why, and when. Appetite 94:2–6. https://doi.org/10.1016/j.appet.2015.02.017

    Article  PubMed  Google Scholar 

  26. Imtiyaz H, Soni P, Yukongdi V (2022) Understanding consumer’s purchase intention and consumption of convenience food in an emerging economy: role of marketing and commercial determinants. J Agric Food Res 10:100399. https://doi.org/10.1016/j.jafr.2022.100399

    Article  Google Scholar 

  27. Aleksejeva S, Siksna I, Rinkule S (2017) Composition of cereal bars. J Health Sci 5:139–145

    Google Scholar 

  28. Bhakha T, Ramasawmy B, Toorabally Z, Neetoo H (2019) Development, characterization and shelf-life testing of a novel pulse-based snack bar. AIMS Agric Food 4(3):756–777. https://doi.org/10.3934/agrfood.2019.3.756

    Article  Google Scholar 

  29. Deepa C, Singh V (2011) Nutrient changes and functional properties of rice flakes prepared in a small-scale industry. Oryza 48(1):56–63

    Google Scholar 

  30. Kumar S, Prasad K (2017) Optimization of flaked rice dry roasting in common salt and studies on associated changes in chemical, nutritional, optical, physical, rheological and textural attributes. Asian J Chem 29(6):1380–1392

    Article  CAS  Google Scholar 

  31. Dahare R, Sahu B, Patel S (2019) Effect on physical, chemical and functional characteristics during transformation of paddy to flaked rice: (POHA). Int J Chem Stud 7(3):73–80

    CAS  Google Scholar 

  32. Harni M, Putri SK, GusmaliniHandayani TD (2021) Characteristics of glucose syrup from various sources of starch. IOP Conf Ser Earth Environ Sci 757:012064. https://doi.org/10.1088/1755-1315/757/1/012064

    Article  Google Scholar 

  33. Souza MF, Rodrigues MA, Freitas SP, Bon EPS (2020) Effect of milling and enzymatic hydrolysis in the production of glucose from starch-rich Chlorella sorokiniana biomass. Algal Res 50:101961. https://doi.org/10.1016/j.algal.2020.101961

    Article  Google Scholar 

  34. Onipe OO, Jideani AIO, Beswa D (2015) Composition and functionality of wheat bran and its application in some cereal food products. Int J Food Sci Technol 50(12):2509–2518. https://doi.org/10.1111/ijfs.12935

    Article  CAS  Google Scholar 

  35. Astudillo A, Rubilar O, Briceño G, Diez MC, Schalchli H (2023) Advances in agro-industrial waste as a substrate for obtaining eco-friendly microbial products. Sustainability 15(4):3467. https://doi.org/10.3390/su15043467

    Article  CAS  Google Scholar 

  36. Pihlajaniemi V, Mattila O, Koitto T, Nikinmaa M, Heiniö R-L, Sorsamäki L, Siika-aho M, Nordlund E (2020) Production of syrup rich in arabinoxylan oligomers and antioxidants from wheat bran by alkaline pretreatment and enzymatic hydrolysis, and applicability in baking. J Cereal Sci 95:103043. https://doi.org/10.1016/j.jcs.2020.103043

    Article  CAS  Google Scholar 

  37. Lopes FC, Ligabue-Braun R (2021) Agro-industrial residues: eco-friendly and inexpensive substrates for microbial pigments production. Front Sustain Food Syst 5:589414. https://doi.org/10.3389/fsufs.2021.589414

    Article  Google Scholar 

  38. Noguerol AT, Pagán MJ, García-Segovia P, Varela P (2021) Green or clean? Perception of clean label plant-based products by omnivorous, vegan, vegetarian and flexitarian consumers. Food Res Int 149:110652. https://doi.org/10.1016/j.foodres.2021.110652

    Article  PubMed  Google Scholar 

  39. Freitas A, Escaramboni B, Carvalho A, Lima V, Oliva-Neto P (2014) Production and application of amylases of Rhizopus oryzae and Rhizopus microsporus var Oligosporus from industrial waste in acquisition of glucose. Chem Pap 68(4):442–450

    Article  Google Scholar 

  40. Lutz IA (1985) Métodos físico-químicos para análise de alimentos, 3rd edn. Instituto Adolfo Luz, São Paulo

    Google Scholar 

  41. AOAC (2000) Official methods of analysis, 17th edn. Association of Official Analytical Chemists, Gaithersburg, USA

    Google Scholar 

  42. Junqueira JRJ, Lima Junior FA, Fernandes GS, Paes MCD, Pereira J (2017) Proximate composition and technological characteristics of dry pasta incorporated with micronized corn pericarp. Rev Caatinga 30(2):496–502. https://doi.org/10.1590/1983-21252017v30n225rc

    Article  Google Scholar 

  43. Soccol CR, Iloki I, Marin B, Raimbault M (1994) Comparative production of alpha-amylase, glucoamylase and protein enrichment of raw and cooked cassava by Rhizopus strains in submerged and solid state fermentations. J Food Sci Technol 31(4):320–323

    CAS  Google Scholar 

  44. Escaramboni B, Núñez EGF, Carvalho AFA, Oliva Neto P (2018) Ethanol biosynthesis by fast hydrolysis of cassava bagasse using fungal amylases produced in optimized conditions. Ind Crops Prod 112:368–377. https://doi.org/10.1016/j.indcrop.2017.12.004

    Article  CAS  Google Scholar 

  45. Miller GL (1959) Use of dinitrosalicylic acid reagent for determination of reducing sugar. Anal Chem 31(3):426–428. https://doi.org/10.1021/ac60147a030

    Article  CAS  Google Scholar 

  46. Gómez-Luría D, Vernon-Carter EJ, Alvarez-Ramirez J, Cruz-Sosa F (2018) Insights of the ability of gelatinized fractions from non-chemical modified corn, rice, wheat, and waxy corn starches to stabilize O/W emulsions. Food Hydrocoll 89:726–734. https://doi.org/10.1016/j.foodhyd.2018.11.045

    Article  CAS  Google Scholar 

  47. Singleton VL, Rossi JA (1965) Colorimetry of total phenolics with phosphomolybdic-phosphotungstic acid reagents. Am J Enol Vitic 16:144–158. https://doi.org/10.5344/ajev.1965.16.3.144

    Article  CAS  Google Scholar 

  48. Silva RMG, Alves CP, Barbosa FC, Santos HH, Adão KM, Granero FO, Figueiredo CCM, Figueiredo CR, Nicolau-Junior N, Silva LP (2024) Antioxidant, antitumoral, antimetastatic effect and inhibition of collagenase enzyme activity of Eleutherine bulbosa (Dayak onion) extract: in vitro, in vivo and in silico approaches. J Ethnopharmacol. https://doi.org/10.1016/j.jep.2023.117005

    Article  PubMed  Google Scholar 

  49. Christ B, Müller KH (1960) Zur serienmäßigen bestimmung des gehaltes an flavonol-derivaten in drogen [determination of the amount of flavonol derivatives in drugs]. Arch Pharm 293(12):1033–1042. https://doi.org/10.1002/ardp.19602931202

    Article  CAS  Google Scholar 

  50. Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72(1–2):248–254. https://doi.org/10.1016/0003-2697(76)90527-3

    Article  CAS  PubMed  Google Scholar 

  51. Rufino MSM, Alves RE, Fernandes FAN, Brito ES (2011) Free radical scavenging behavior of ten exotic tropical fruits extracts. Food Res Int 44(7):2072–2075. https://doi.org/10.1016/j.foodres.2010.07.002

    Article  CAS  Google Scholar 

  52. Guimarães AG, Oliveira GF, Melo MS, Cavalcanti SCH, Antoniolli AR, Bonjardim LR, Silva FA, Santos JPA, Rocha RF, Moreira JCF, Araújo AAS, Gelain DP, Quintans-Júnior LJ (2010) Bioassay-guided evaluation of antioxidant and antinociceptive activities of carvacrol. Basic Clin Pharmacol Toxicol 107(6):949–957. https://doi.org/10.1111/j.1742-7843.2010.00609.x

    Article  CAS  PubMed  Google Scholar 

  53. Re R, Pellegrini N, Proteggente A, Pannala A, Yang M, RiceEvans CA (1999) Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Radic Biol Med 26(9–10):1231–1237. https://doi.org/10.1016/s0891-5849(98)00315-3

    Article  CAS  PubMed  Google Scholar 

  54. NEPA (2011) Tabela brasileira de composição de alimentos—TACO, 4th edn. University of Campinas(UNICAMP) Center for Food Studies and Research., Brazil, p 161

    Google Scholar 

  55. ANVISA (2021). Guia para avaliação de alegação de propriedade funcional e de saúde para substâncias bioativas presentes em alimentos e suplementos alimentares—Guia no 55/2021. Agência Nacional de Vigilância Sanitária (ANVISA) [Brazilian Health Regulatory Agency], Brasília, D.F., Brazil. https://antigo.anvisa.gov.br/legislacao#/visualizar/466281. (Accessed 15 Sep 2023).

  56. Shang X-L, Liu C-Y, Dong H-Y, Peng H-H, Zhu Z-Y (2021) Extraction, purification, structural characterization, and antioxidant activity of polysaccharides from wheat bran. J Mol Struct 1233:130096. https://doi.org/10.1016/j.molstruc.2021.130096

    Article  CAS  Google Scholar 

  57. Babu S, Rathore SS, Singh R, Kumar S, Singh VK, Yadav SK, Yadak V, Raj R, Yadav D, Shekhawat K, Wani OA (2022) Exploring agricultural waste biomass for energy, food and feed production and pollution mitigation: a review. Bioresour Technol 360:127566. https://doi.org/10.1016/j.biortech.2022.127566

    Article  CAS  PubMed  Google Scholar 

  58. Kong F, Wang L, Gao H, Chen H (2020) Process of steam explosion assisted superfine grinding on particle size, chemical composition, and physico-chemical properties of wheat bran powder. Powder Technol 371:154–160. https://doi.org/10.1016/j.powtec.2020.05.067

    Article  CAS  Google Scholar 

  59. Ye G, Wu Y, Wang L, Tan B, Shen W, Li X, Liu Y, Tian X, Zhang D (2021) Comparison of six modification methods on the chemical composition, functional properties, and antioxidant capacity of wheat bran. LWT Food Sci Technol 149:111996. https://doi.org/10.1016/j.lwt.2021.111996

    Article  CAS  Google Scholar 

  60. Yadav MP, Kaur A, Singh B, Simon S, Kaur N, Powell M, Sarker M (2021) Extraction and characterization of lipids and phenolic compounds from the brans of different wheat varieties. Food Hydrocoll 117:106734. https://doi.org/10.1016/j.foodhyd.2021.106734

    Article  CAS  Google Scholar 

  61. Babu CR, Ketanapalli H, Beebi SK, Kolluru VC (2018) Wheat bran-composition and nutritional quality: a review. Adv Biotechnol Microbiol 9(1):555754

    Google Scholar 

  62. Papageorgiou M, Skendi A (2018) 1—Introduction to cereal processing and by-products. In: Galanakis CM (ed) Sustainable recovery and reutilization of cereal processing by-products, 1st edn. Elsevier, Amsterdam, pp 1–25

    Google Scholar 

  63. Kaur A, Yadav MP, Singh B, Bhinder S, Simon S, Singh N (2019) Isolation and characterization of arabinoxylans from wheat bran and study of their contribution to wheat flour dough rheology. Carbohydr Polym 221:166–173. https://doi.org/10.1016/j.carbpol.2019.06.002

    Article  CAS  PubMed  Google Scholar 

  64. Javed MM, Zahoor S, Shafaat S, Mehmooda I, Gul A, Rasheed H, Bukhari AI, Aftab MN, ul-Haq I (2012) Wheat bran as a brown gold: nutritious value and its biotechnological applications. Afr J Microbiol Res 6(4):724–733. https://doi.org/10.5897/AJMRX11.035

    Article  CAS  Google Scholar 

  65. Lima EA, Mandelli F, Kolling D, Souza JM, Oliveira Filho CA, Silva MR, Sampaio ILM, Junqueira TL, Chagas MF, Teodoro JC, Morais ER, Murakami MT (2022) Development of an economically competitive Trichoderma-based platform for enzyme production: bioprocess optimization, pilot plant scale-up, techno-economic analysis and life cycle assessment. Bioresour Technol 364:128019. https://doi.org/10.1016/j.biortech.2022.128019

    Article  CAS  PubMed  Google Scholar 

  66. Sousa D, Salgado JM, Cambra-López M, Dias A, Belo I (2023) Bioprocessing of oilseed cakes by fungi consortia: impact of enzymes produced on antioxidants release. J Biotechnol 364:5–12. https://doi.org/10.1016/j.jbiotec.2023.01.008

    Article  CAS  PubMed  Google Scholar 

  67. Singhania RR, Patel AK, Tseng Y-S, Kumar V, Chen CW, Haldar D, Saini JK, Dong C-D (2022) Developments in bioprocess for bacterial cellulose production. Bioresour Technol. https://doi.org/10.1016/j.biortech.2021.126343

    Article  PubMed  Google Scholar 

  68. Andrade SCA, Baretto TA, Arcanjo NMO, Madruga MS, Meireles B, Cordeiro AMT, Lima MAB, Souza EL, Magnani M (2017) Control of Rhizopus soft rot and quality responses in plums (Prunus domestica L.) coated with gum arabic, oregano and rosemary essential oils. J Food Process Preserv. https://doi.org/10.1111/jfpp.13251

    Article  Google Scholar 

  69. Prado FG, Miyaoka MF, Pereira GVM, Pagnoncelli MGB, Prado MRM, Bonatto SJR, Spier MR, Soccol CR (2021) Fungal-mediated biotransformation of soybean supplemented with different cereal grains into a functional compound with antioxidant, anti-inflammatory and antitumoral activities. Biointerface Res Appl Chem 11(1):8018–8033

    Google Scholar 

  70. Bachi AC, Ito S, Escaramboni B, Oliva Neto P, Herculano RD, Miranda MCR, Passalia FJ, Rocha JC, Núñez EGF (2016) Artificial intelligence approach based on near-infrared spectral data for monitoring of solid-state fermentation. Process Biochem 51(10):1338–1347. https://doi.org/10.1016/j.procbio.2016.07.017

    Article  CAS  Google Scholar 

  71. Yang Z, Huang T, Guo A, Chen W, Bai W, Wei L, Tian L (2023) Insights into the fermentation patterns of wheat bran cell wall polysaccharides using an in-vitro batch fermentation model. Carbohydr Poly 317:121100. https://doi.org/10.1016/j.carbpol.2023.121100

    Article  CAS  Google Scholar 

  72. Núñez EGF, Barchi AC, Ito S, Escaramboni B, Herculano RD, Mayer CRM, Oliva Neto P (2016) Artificial intelligence approach for high level production of amylase using Rhizopus microsporus var. oligosporus and different agro-industrial wastes. J Chem Technol Biotechnol 92(3):684–692. https://doi.org/10.1002/jctb.5054

    Article  CAS  Google Scholar 

  73. Melnichuk N, Braia MJ, Anselmi PA, Meini M-R, Romanini D (2020) Valorization of two agro-industrial wastes to produce alpha-amylase enzyme from Aspergillus oryzae by solid-state fermentation. Waste Manag 106:155–161. https://doi.org/10.1016/j.wasman.2020.03.025

    Article  CAS  PubMed  Google Scholar 

  74. Escaramboni B, Oliva Neto P (2014). Processo para obtenção de xarope de glicose via hidrólise por extrato amilolítico. Brazilian Patent, No BR 102014031591–8 A2, Ministério da Indústria, Comércio Exterior e Serviços, Instituto Nacional da Propriedade Intelectual (INPI), Rio de Janeiro, Rio de Janeiro, Brazil. http://hdl.handle.net/11449/144565.(Accessed 08 Sep 2023).

  75. Vollmuth TA (2018) Caramel color safety—an update. Food Chem Toxicol 111:578–596. https://doi.org/10.1016/j.fct.2017.12.004

    Article  CAS  PubMed  Google Scholar 

  76. Kocadağlı T, Gökmen V (2019) Caramelization in foods: a food quality and safety perspective. In: Melton L, Shahidi F, Varelis P (eds) Encyclopedia of food chemistry. Elsevier, Amsterdam, pp 18–29

    Chapter  Google Scholar 

  77. Aydın N, Kian-Pour N, Toker OS (2021) Caramelized white chocolate: effects of production process on quality parameters. J Food Meas Charact 15:3182–3194. https://doi.org/10.1007/s11694-021-00890-1

    Article  Google Scholar 

  78. Srebernich SM, Gonçalves GMS, Ormenese RCSC, Ruffi CRG (2016) Physico-chemical, sensory and nutritional characteristics of cereal bars with addition of acacia gum, inulin and sorbitol. Food Sci Technol 36(3):555–562. https://doi.org/10.1590/1678-457X.05416

    Article  Google Scholar 

  79. Klerks M, Román S, Verkerk R, Sanchez-Siles L (2022) Are cereal bars significantly healthier and more natural than chocolate bars? A preliminary assessment in the German market. J Funct Foods 89:104940. https://doi.org/10.1016/j.jff.2022.104940

    Article  CAS  Google Scholar 

  80. Stanner SA, Spiro A (2020) Public health rationale for reducing sugar: strategies and challenges. Nutr Bull 45(3):253–270. https://doi.org/10.1111/nbu.12460

    Article  Google Scholar 

  81. Huang Y, Chen Z, Chen B, Li J, Yuan X, Li J, Wang W, Dai T, Chen H, Wang Y, Wang R, Wang P, Guo J, Dong Q, Liu C, Wei Q, Cao D, Liu L (2023) Dietary sugar consumption and health: umbrella review. BMJ 381:e071609. https://doi.org/10.1136/bmj-2022-071609

    Article  PubMed  PubMed Central  Google Scholar 

  82. Garcia MC, Lobato LP, Benassi MT, Junior MSS (2012) Application of roasted rice bran in cereal bars [Aplicação de farelo de arroz torrado em barras de cereais]. Food Sci Technol 32(4):718–724. https://doi.org/10.1590/S0101-20612012005000096

    Article  Google Scholar 

  83. Shanmugam H, Rengarajan C, Nataraj S, Sharma A (2022) Interactions of plant food bioactives-loaded nano delivery systems at the nano-bio interface and its pharmacokinetics: an overview. Food Frontiers 3(2):256–275. https://doi.org/10.1002/fft2.130

    Article  CAS  Google Scholar 

  84. Patle PK, Shukla SS, Bharti A, Rana GK (2020) Evaluation of different varieties of paddy for production of flaked rice. Int J Chem Stud 8(2):2419–2425

    Article  CAS  Google Scholar 

  85. Naczk M, Shahidi F (2006) Phenolics in cereals, fruits and vegetables: occurrence, extraction and analysis. J Pharm Biomed Anal 41(5):1523–1542. https://doi.org/10.1016/j.jpba.2006.04.002

    Article  CAS  PubMed  Google Scholar 

  86. Janiak MA, Renzetti S, Noort M, Amarowicz R (2019) Antioxidant potential of wheat bran phenolics extracted with organic solvents. Bulg Chem Commun 51(Special Issue A):75–78

    Google Scholar 

  87. López-Perea P, Guzmán-Ortiz FA, Román-Gutiérrez AD, Castro-Rosas J, Gómez-Aldapa CA, Rodríguez-Marín ML, Falfán-Cortés RN, González-Olivares LG, Torruco-Uco JG (2019) Bioactive compounds and antioxidant activity of wheat bran and barley husk in the extracts with different polarity. Int J Food Prop 22(1):646–658. https://doi.org/10.1080/10942912.2019.1600543

    Article  CAS  Google Scholar 

  88. Mao M, Wang P, Shi K, Lu Z, Bie X, Zhao H, Zhang C, Lv F (2020) Effect of solid-state fermentation by Enterococcus faecalis M2 on antioxidant and nutritional properties of wheat bran. J Cereal Sci 94:102997. https://doi.org/10.1016/j.jcs.2020.102997

    Article  CAS  Google Scholar 

  89. Jimenez-Pulido IJ, Daniel R, Perez J, Martínez-Villaluenga C, De Luis D, Diana ABM (2022) Impact of protein content on the antioxidants, anti-inflammatory properties and glycemic index of wheat and wheat bran. Foods 11(14):2049. https://doi.org/10.3390/foods11142049

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Wayenbergh EV, Langenaeken NA, Struyf N, Goos P, Foubert I, Courtin CM (2023) Stabilisation of vitamin A by wheat bran is affected by wheat bran antioxidants, bound lipids and endogenous lipase activity. Food Res Int 169:112911. https://doi.org/10.1016/j.foodres.2023.112911

    Article  CAS  PubMed  Google Scholar 

  91. Pasqualone A, Delvecchio LN, Mangini G, Taranto F, Blanco A (2014) Variability of total soluble phenolic compounds and antioxidant activity in a collection of tetraploid wheat. Agr Food Sci 23:307–316

    Article  Google Scholar 

  92. Adom KK, Sorrells ME, Liu RH (2003) Phytochemical profiles and antioxidant activity of wheat varieties. J Agric Food Chem 51(26):7825–7834. https://doi.org/10.1021/jf030404l

    Article  CAS  PubMed  Google Scholar 

  93. Bagchi TB, Chattopadhyay K, Sivashankari M, Roy S, Kumar A, Biswas T, Srikumar P (2021) Effect of different processing technologies on phenolic acids, flavonoids and other antioxidants content in pigmented rice. J Cereal Sci 100:103263. https://doi.org/10.1016/j.jcs.2021.103263

    Article  CAS  Google Scholar 

  94. Amrinola W, Sitanggang AB, Kusnandar F, Budijanto S (2022) Characterization of pigmented and non-pigmented flakes glutinous rice (ampiang) on chemical compositions, free fatty acids compositions, amino acids compositions, dietary fiber content, and antioxidant properties. Food Sci Technol 42:e86621. https://doi.org/10.1590/fst.86621

    Article  Google Scholar 

  95. Ryland D, Vaisey-Genser M, Arntfield SD, Malcolmson LJ (2010) Development of a nutritious acceptable snack bar using micronized flaked lentils. Food Res Int 43(2):642–649. https://doi.org/10.1016/j.foodres.2009.07.032

    Article  CAS  Google Scholar 

  96. Machín L, Cabrera M, Curutchet MR, Martínez J, Giménez A, Ares G (2017) Consumer perception of the healthfulness of ultra-processed products featuring different front-of-pack nutrition labeling schemes. J Nutr Educ Behav. https://doi.org/10.1016/j.jneb.2016.12.003

    Article  PubMed  Google Scholar 

  97. Ballco P, Garcia A (2022) Tackling nutritional and health claims to disentangle their effects on consumer food choices and behaviour: a systematic review. Food Qual Prefer 101:104634. https://doi.org/10.1016/j.foodqual.2022.104634

    Article  Google Scholar 

Download references

Acknowledgements

This study was supported by the National Council for Scientific and Technological Development (CNPq)—Process number: 142384/2019-4

Funding

This research did not receive any specific grant from funding agencies.

Author information

Authors and Affiliations

Authors

Contributions

CCMF: conceptualization, methodology, investigation, writing—original draft; FOG: investigation, writing—review and editing; LPS and IFAN: formal analysis; JFS, BE and PON: formal analysis and investigation; RMGS: conceptualization, methodology, investigation, writing—original draft, supervision and project administration.

Corresponding author

Correspondence to Regildo Márcio Gonçalves da Silva.

Ethics declarations

Conflict of interest

The authors declare that they have no known conflict of interest financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Figueiredo, C.C.M., Granero, F.O., Silva, L.P. et al. Solid-state fermentation using wheat bran to produce glucose syrup and functional cereal bars. Bioprocess Biosyst Eng (2024). https://doi.org/10.1007/s00449-024-03032-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00449-024-03032-1

Keywords

Navigation