Skip to main content
Log in

Catharanthus roseus-assisted bio-fabricated zinc oxide nanoparticles for promising antibacterial potential against Klebsiella pneumoniae

  • Research Paper
  • Published:
Bioprocess and Biosystems Engineering Aims and scope Submit manuscript

Abstract

This study emphasized on the synthesis of zinc oxide nanoparticles (ZnO NPs) in an environmentally friendly manner from the extract of Catharanthus roseus leaves and its antibacterial assessment against the pneumonia-causing pathogen Klebsiella pneumoniae. This simple and convenient phytosynthesis approach is found to be beneficial over conventional methods, wherein plants serve as excellent reducing, capping, and stabilizing agents that enables the formation of ZnO NPs without the use of harmful chemicals. The formation of ZnO NPs was confirmed through several characterization techniques such as UV–visible spectroscopy, XRD, FT-IR, SEM, HR-TEM, and EDX. XRD analysis revealed high polycrystallinity with crystallite size of approximately 13 nm. SEM and HR-TEM revealed the hexagonal structure of ZnO NPs with the particle size range of 20–50 nm. The EDX shows the elemental purity without any impurity. Furthermore, the antibacterial efficacy by the technique of disc diffusion exhibited clear inhibition zones in ZnO NPs-treated discs. In addition, 125 µg/mL of ZnO NP concentration showed minimum inhibition by the microbroth dilution method. The potent inhibitory activity was further validated with trypan blue dye exclusion and fluorescence microscopy. Finally, SEM examination confirmed the efficient antibacterial potential of ZnO NPs through disruption of the intact morphology of Klebsiella pneumoniae.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data availability

Data are available in this manuscript.

References

  1. Shobha B, Ashwini BS, Ghazwani M, Hani U, Atwah B, Alhumaidi MS, Basavaraju S, Chowdappa S, Ravikiran T, Wahab S, Ahmad W (2023) Trichoderma-mediated ZnO nanoparticles and their antibiofilm and antibacterial activities. J Fungi 9:133

    Article  CAS  Google Scholar 

  2. Kim EJ, Lee J, Yoon Y, Lee D, Baek Y, Takano C, Sakai J, Iijima T, Kanamori D, Gardner H, McLaughlin RE (1937) Development of a novel loop-mediated isothermal amplification assay for ß-lactamase gene identification using clinical isolates of Gram-negative bacteria. Front Cell Infect Microbiol 2023:12

    Google Scholar 

  3. WHO (2017) Global priority list of antibiotic-resistant bacteria to guide research, discovery, and development of new antibiotics. WHO, pp 1–7. https://www.who.int/

  4. Wyres KL, Lam MM, Holt KE (2020) Population genomics of Klebsiella pneumonia. Nat Rev Microbiol 18(6):344–359

    Article  CAS  PubMed  Google Scholar 

  5. Shyaula M, Khadka C, Dawadi P, Banjara MR (2023) Systematic review and meta-analysis on extended-spectrum β-lactamases producing Klebsiella pneumonia in Nepal. Microbiol Insights 16:11786361221145180

    Article  PubMed  PubMed Central  Google Scholar 

  6. Russo A, Fusco P, Morrone HL, Trecarichi EM, Torti C (2023) New advances in management and treatment of multidrug-resistant Klebsiella pneumoniae. Expert Rev Anti-infect Ther 21(1):41–55

    Article  CAS  PubMed  Google Scholar 

  7. Demissie MG, Sabir FK, Edossa GD, Gonfa BA (2020) Synthesis of zinc oxide nanoparticles using leaf extract of lippia adoensis (koseret) and evaluation of its anti-bacterial activity. J Chem 2020:1–9

  8. Song J, Razzaq A, Khan NU, Iqbal H, Ni J (2023) Chitosan/poly (3-hydroxy butyric acid-co-3-hydroxy valeric acid) electrospun nanofibers with cephradine for superficial incisional skin wound infection management. Int J Biol Macromol 250:126229

    Article  CAS  PubMed  Google Scholar 

  9. Razzaq A, Khan ZU, Saeed A, Shah KA, Khan NU, Menaa B, Iqbal H, Menaa F (2021) Development of cephradine-loaded gelatin/polyvinyl alcohol electrospun nanofibers for effective diabetic wound healing: in-vitro and in-vivo assessments. Pharmaceutics 13(3):349

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Jeevanandam J, Kiew SF, Boakye-Ansah S, Lau SY, Barhoum A, Danquah MK, Rodrigues J (2022) Green approaches for the synthesis of metal and metal oxide nanoparticles using microbial and plant extracts. Nanoscale 14(7):2534–2571

    Article  CAS  PubMed  Google Scholar 

  11. Nilavukkarasi M, Vijayakumar S, Prathipkumar S (2020) Capparis zeylanica mediated bio-synthesized ZnO nanoparticles as antimicrobial, photocatalytic and anti-cancer applications. Mater Sci Ener Technol 3:335–343

    CAS  Google Scholar 

  12. Wijesinghe U, Thiripuranathar G, Menaa F, Iqbal H, Razzaq A, Almukhlifi H (2021) Green synthesis, structural characterization and photocatalytic applications of ZnO nanoconjugates using Heliotropium indicum. Catalysts 11(7):831

    Article  CAS  Google Scholar 

  13. Ahmad W, Kalra D (2020) Green synthesis, characterization and anti microbial activities of ZnO nanoparticles using Euphorbia hirta leaf extract. J King Saud Univ Sci 32(4):2358–2364

    Article  Google Scholar 

  14. Majeed S, Saravanan M, Danish M, Zakariya NA, Ibrahim MNM, Rizvi EH, un Nisa Andrabi S, Barabadi H, Mohanta YK, Mostafavi E (2023) Bioengineering of green-synthesized TAT peptide-functionalized silver nanoparticles for apoptotic cell-death mediated therapy of breast adenocarcinoma. Talanta 253:24026

  15. Zafar M, Iqbal T, Afsheen S, Iqbal A, Shoukat A (2023) An overview of green synthesis of zinc oxide nanoparticle by using various natural entities. Inorg Nano-Met Chem 53:1–18. https://doi.org/10.1080/24701556.2023.2165681

    Article  CAS  Google Scholar 

  16. Rather GA, Nanda A, Pandit MA, Yahya S, Barabadi H, Saravanan M (2021) Biosynthesis of Zinc oxide nanoparticles using Bergenia ciliate aqueous extract and evaluation of their photocatalytic and antioxidant potential. Inorg Chem Commun 134:109020

    Article  Google Scholar 

  17. Mendes CR, Dilarri G, Forsan CF, Sapata VDMR, Lopes PRM, de Moraes PB, Montagnolli RN, Ferreira H, Bidoia ED (2022) Antibacterial action and target mechanisms of zinc oxide nanoparticles against bacterial pathogens. Sci Rep 12(1):2658

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Akbar A, Sadiq MB, Ali I, Muhammad N, Rehman Z, Khan MN, Muhammad J, Khan SA, Rehman FU, Anal AK (2019) Synthesis and antimicrobial activity of zinc oxide nanoparticles against foodborne pathogens Salmonella typhimurium and Staphylococcus aureus. Biocatal Agric Biotechnol 17:36–42

    Article  Google Scholar 

  19. Happy A, Soumya M, Kumar SV, Rajeshkumar S, Sheba RD, Lakshmi T, Nallaswamy VD (2019) Phyto-assisted synthesis of zinc oxide nanoparticles using Cassia alata and its antibacterial activity against Escherichia coli. Biochem Biophys Rep 17:208–211

    PubMed  PubMed Central  Google Scholar 

  20. Alhujaily M, Albukhaty S, Yusuf M, Mohammed MK, Sulaiman GM, Al-Karagoly H, Alyamani AA, Albaqami J, AlMalki FA (2022) Recent advances in plant-mediated zinc oxide nanoparticles with their significant biomedical properties. Bioengineering 9(10):541

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Wijesinghe U, Thiripuranathar G, Iqbal H, Menaa F (2021) Biomimetic synthesis, characterization, and evaluation of fluorescence resonance energy transfer, photoluminescence, and photocatalytic activity of zinc oxide nanoparticles. Sustainability 13(4):2004

    Article  CAS  Google Scholar 

  22. Nair GM, Sajini T, Mathew B (2022) Advanced green approaches for metal and metal oxide nanoparticles synthesis and their environmental applications. Talanta Open 5:100080

    Article  Google Scholar 

  23. Iqbal J, Abbasi BA, Yaseen T, Zahra SA, Shahbaz A, Shah SA, Uddin S, Ma X, Raouf B, Kanwal S, Amin W (2021) Green synthesis of zinc oxide nanoparticles using Elaeagnus angustifolia L. leaf extracts and their multiple in vitro biological applications. Sci Rep 11(1):20988

  24. Shreyash N, Bajpai S, Khan MA, Vijay Y, Tiwary SK, Sonker M (2021) Green synthesis of nanoparticles and their biomedical applications: a review. ACS Appl Nano Mater 4(11):11428–11457

    Article  CAS  Google Scholar 

  25. MuthuKathija M, Badhusha MSM, Rama V (2023) Green synthesis of zinc oxide nanoparticles using Pisonia Alba leaf extract and its antibacterial activity. Appl Surf Sci Adv 15:100400

    Article  Google Scholar 

  26. Dappula SS, Kandrakonda YR, Shaik JB, Mothukuru SL, Lebaka VR, Mannarapu M, Amooru GD (2023) Biosynthesis of zinc oxide nanoparticles using aqueous extract of Andrographis alata: characterization, optimization and assessment of their antibacterial, antioxidant, antidiabetic and anti-Alzheimer’s properties. J Mol Struct 1273:134264

    Article  CAS  Google Scholar 

  27. Kumar S, Singh B, Singh R (2022) Catharanthus roseus (L.) G. Don: a review of its ethnobotany, phytochemistry, ethnopharmacology and toxicities. J Ethnopharmacol 284:114647

  28. Barkat MA, Abul H, Rahman MA (2017) Agricultural, pharmaceutical, and therapeutic interior of Catharanthus roseus (L.) G. Don. In: Naeem M, Aftab T, Khan M (eds) Catharanthus roseus: current research and future prospects, 1st edn. Springer, Cham, pp 71–100. https://doi.org/10.1007/978-3-319-51620-2_5

    Chapter  Google Scholar 

  29. Elhassaneen Y, Ragab S, Abd El-Rahman A, Arafa S (2021) Vinca (Catharanthus roseus) extracts attenuate alloxan-induced hyperglycemia and oxidative stress in rats. Am J Food Sci Technol 9(4):161–172

    CAS  Google Scholar 

  30. Vahidi H, Kobarfard F, Alizadeh A, Saravanan M, Barabadi H (2021) Green nanotechnology-based tellurium nanoparticles: exploration of their antioxidant, antibacterial, antifungal and cytotoxic potentials against cancerous and normal cells compared to potassium tellurite. Inorg Chem Commun 124:108385

    Article  CAS  Google Scholar 

  31. Saleem S, Kanwal M, Miana GA, Nafees R, Maqsood S, Naeem K, Razzaq A, Iqbal H (2021) Phytochemical and GCMS approaches to identify active constituents in Erythrina suberosa bark extract and evaluation of its therapeutic potency. Pak J Pharm Sci 34(6):2227

  32. Lakshmeesha TR, Kalagatur NK, Mudili V, Mohan CD, Rangappa S, Prasad BD, Ashwini BS, Hashem A, Alqarawi AA, Malik JA, AbdAllah EF (2019) Biofabrication of zinc oxide nanoparticles with Syzygium aromaticum flower buds extract and finding its novel application in controlling the growth and mycotoxins of Fusarium graminearum. Front Microbiol 10:1244

    Article  PubMed  PubMed Central  Google Scholar 

  33. Lai HY, Lim YY, Kim KH (2010) Blechnum orientale Linn-a fern with potential as antioxidant, anticancer and antibacterial agent. BMC Complement Altern Med 10:1–8

    Article  Google Scholar 

  34. Elshikh M, Ahmed S, Funston S, Dunlop P, McGaw M, Marchant R, Banat IM (2016) Resazurin-based 96-well plate microdilution method for the determination of minimum inhibitory concentration of biosurfactants. Biotechnol Lett 38:1015–1019

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Hossain MM, Polash SA, Takikawa M, Shubhra RD, Saha T, Islam Z, Hossain S, Hasan MA, Takeoka S, Sarker SR (2019) Investigation of the antibacterial activity and in vivo cytotoxicity of biogenic silver nanoparticles as potent therapeutics. Front Bioeng Biotechnol 7:239

    Article  PubMed  PubMed Central  Google Scholar 

  36. Nayak S, Bhat MP, Udayashankar AC, Lakshmeesha TR, Geetha N, Jogaiah S (2020) Biosynthesis and characterization of Dillenia indica-mediated silver nanoparticles and their biological activity. Appl Organomet Chem 34(4):e5567

    Article  CAS  Google Scholar 

  37. Chunchegowda UA, Shivaram AB, Mahadevamurthy M, Ramachndrappa LT, Lalitha SG, Krishnappa HK, Anandan S, Sudarshana BS, Chanappa EG, Ramachandrappa NS (2021) Biosynthesis of Zinc oxide nanoparticles using leaf extract of Passiflora subpeltata: Characterization and antibacterial activity against Escherichia coli isolated from poultry faeces. J Clust Sci 32:1663–1672

    Article  CAS  Google Scholar 

  38. Baldiris R, Teher AV, Vivas-Reyes R, Montes A, Arzuza O (2016) Anti-biofilm activity of ibuprofen and diclofenac against some biofilm producing Escherichia coli and Klebsiella pneumoniae uropathogens. Afr J Microbiol Res 10:1675–1684

    Article  CAS  Google Scholar 

  39. AL-Khikani FHO, Abadi RM, Ayit AS (2020) Emerging carbapenemase Klebsiella oxytoca with multidrug resistance implicated in urinary tract infection. Biomed Biotechnol Res J 4(2):148–151

  40. Umamaheswari A, Prabu SL, John SA, Puratchikody A (2021) Green synthesis of zinc oxide nanoparticles using leaf extracts of Raphanus sativus var. Longipinnatus and evaluation of their anticancer property in A549 cell lines. Biotechnol Rep 29:e00595

  41. Lakshmi JV, Sharath R, Chandraprabha MN, Neelufar E, Hazra A, Patra M (2012) Synthesis, characterization and evaluation of antimicrobial activity of zinc oxide nanoparticles. J Biochem Technol 3(5):S151–S154

  42. Muhammad W, Ullah N, Haroon M, Abbasi BH (2019) Optical, morphological and biological analysis of zinc oxide nanoparticles (ZnO NPs) using Papaver somniferum L. RSC Adv 9(51):29541–29548

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Gebre SH (2023) Bio-inspired synthesis of metal and metal oxide nanoparticles: the key role of phytochemicals. J Clust Sci 34(2):665–704

    Article  CAS  Google Scholar 

  44. Guruviah K, Annamalai SK, Ramaswamy A, Sivasankaran C, Ramasamy S, Barabadi H, Saravanan M (2020) Comparative antimicrobial and anticancer activity of biologically and chemically synthesized zinc oxide nanoparticles toward breast cancer cells. Nanomed J 7(4):272

  45. Diallo A, Ngom BD, Park E, Maaza M (2015) Green synthesis of ZnO nanoparticles by Aspalathus linearis: structural & optical properties. J Alloys Compd 646:425–430

    Article  CAS  Google Scholar 

  46. Mahamuni PP, Patil PM, Dhanavade MJ, Badiger MV, Shadija PG, Lokhande AC, Bohara RA (2019) Synthesis and characterization of zinc oxide nanoparticles by using polyol chemistry for their antimicrobial and antibiofilm activity. Biochem Biophys Rep 17:71–80

    PubMed  Google Scholar 

  47. Yassin MT, Mostafa AAF, Al-Askar AA, Al-Otibi FO (2022) Facile green synthesis of zinc oxide nanoparticles with potential synergistic activity with common antifungal agents against multidrug-resistant candidal strains. Crystals 12(6):774

    Article  CAS  Google Scholar 

  48. Abdelkhalek A, Al-Askar AA (2020) Green synthesized ZnO nanoparticles mediated by Mentha spicata extract induce plant systemic resistance against Tobacco mosaic virus. Appl Sci 10(15):5054

    Article  CAS  Google Scholar 

  49. Ramani M, Ponnusamy S, Muthamizhchelvan C, Cullen J, Krishnamurthy S, Marsili E (2013) Morphology-directed synthesis of ZnO nanostructures and their antibacterial activity. Colloids Surf B: Biointerfaces 105:24–30

    Article  CAS  PubMed  Google Scholar 

  50. Suwanboon S, Amornpitoksuk P, Bangrak P, Randorn C (2014) Physical and chemical properties of multifunctional ZnO nanostructures prepared by precipitation and hydrothermal methods. Ceram Int 40(1):975–983

    Article  CAS  Google Scholar 

  51. Barzinjy AA, Azeez HH (2020) Green synthesis and characterization of zinc oxide nanoparticles using Eucalyptus globulus Labill. leaf extract and zinc nitrate hexahydrate salt. SN Appl Sci 2(5):991

  52. Hamdy E, Al-Askar AA, El-Gendi H, Khamis WM, Behiry SI, Valentini F, Abd-Elsalam KA, Abdelkhalek A (2023) Zinc oxide nanoparticles biosynthesized by eriobotrya japonica leaf extract: characterization, insecticidal and antibacterial properties. Plants 12(15):2826

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Wypij M, Jędrzejewski T, Trzcińska-Wencel J, Ostrowski M, Rai M, Golińska P (2021) Green synthesized silver nanoparticles: antibacterial and anticancer activities, biocompatibility, and analyses of surface-attached proteins. Front Microbiol 12:632505

    Article  PubMed  PubMed Central  Google Scholar 

  54. Tahir H, Rashid F, Ali S, Summer M, Abaidullah R (2023) Spectrophotometrically, spectroscopically, microscopically and thermogravimetrically optimized TiO2 and ZnO nanoparticles and their bactericidal, antioxidant and cytotoxic potential: a novel comparative approach. J Fluoresc 33:1–15. https://doi.org/10.1007/s10895-023-03367-0

    Article  CAS  Google Scholar 

  55. Rasha E, Monerah A, Manal A, Rehab A, Mohammed D, Doaa E (2021) Biosynthesis of zinc oxide nanoparticles from Acacia nilotica (L.) extract to overcome carbapenem-resistant Klebsiella pneumoniae. Molecules 26(7):1919

  56. Ramesh P, Saravanan K, Manogar P, Johnson J, Vinoth E, Mayakannan M (2021) Green synthesis and characterization of biocompatible zinc oxide nanoparticles and evaluation of its antibacterial potential. Sens Bio-Sens Res 31:100399

    Article  Google Scholar 

  57. Imade EE, Ajiboye TO, Fadiji AE, Onwudiwe DC, Babalola OO (2022) Green synthesis of zinc oxide nanoparticles using plantain peel extracts and the evaluation of their antibacterial activity. Sci Afr 16:e01152

    CAS  Google Scholar 

  58. Padmavathy N, Vijayaraghavan R (2008) Enhanced bioactivity of ZnO nanoparticles – an antimicrobial study. Sci Technol Adv Mater 9(3):035004

    Article  PubMed  PubMed Central  Google Scholar 

  59. Abbasi BA, Iqbal J, Ahmad R, Zia L, Kanwal S, Mahmood T, Wang C, Chen JT (2019) Bioactivities of Geranium wallichianum leaf extracts conjugated with zinc oxide nanoparticles. Biomolecules 10(1):38

    Article  PubMed  PubMed Central  Google Scholar 

  60. Fahimmunisha BA, Ishwarya R, AlSalhi MS, Devanesan S, Govindarajan M, Vaseeharan B (2020) Green fabrication, characterization and antibacterial potential of zinc oxide nanoparticles using Aloe socotrina leaf extract: a novel drug delivery approach. J Drug Deliv Sci Technol 55:101465

    Article  CAS  Google Scholar 

  61. Abdal Dayem A, Hossain MK, Lee SB, Kim K, Saha SK, Yang GM, Choi HY, Cho SG (2017) The role of reactive oxygen species (ROS) in the biological activities of metallic nanoparticles. Int J Mol Sci 18(1):120

  62. Ranjan Sarker S, Polash SA, Boath J, Kandjani AE, Poddar A, Dekiwadia C, Shukla R, Sabri Y, Bhargava SK (2019) Functionalization of elongated tetrahexahedral Au nanoparticles and their antimicrobial activity assay. ACS Appl Mater Interfaces 11(14):13450–13459

    Article  CAS  PubMed  Google Scholar 

  63. Mahendra C, Murali M, Manasa G, Ponnamma P, Abhilash MR, Lakshmeesha TR, Satish A, Amruthesh KN, Sudarshana MS (2017) Antibacterial and antimitotic potential of bio-fabricated zinc oxide nanoparticles of Cochlospermum religiosum (L.). Microb Pathog 110:620–629

  64. Nakkala JR, Mata R, Gupta AK, Sadras SR (2014) Biological activities of green silver nanoparticles synthesized with Acorous calamus rhizome extract. Eur J Med Chem 85:784–794

    Article  CAS  PubMed  Google Scholar 

  65. Rasha E, Alkhulaifi MM, AlOthman M, Khalid I, Doaa E, Alaa K, Awad MA, Abdalla M (2021) Effects of zinc oxide nanoparticles synthesized using Aspergillus niger on Carbapenem-Resistant Klebsiella pneumonia in vitro and in vivo. Front Cell Infect Microbiol 11:748739

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors extend their appreciation to the Deanship of Scientific Research at King Khalid University for funding this work through Large Group Research Project under grant number RGP2/54/44. The authors also acknowledge the Department of Microbiology and Biotechnology, Bangalore University for providing infrastructural facilities to carry out this work.

Funding

This research work is funded by the Deanship of Scientific Research at King Khalid University, Saudi Arabia, through the Large Group Research Project under grant number RGP2/54/44.

Author information

Authors and Affiliations

Authors

Contributions

Sumreen Sultana, Bagepalli Shivaram Ashwini, Mohammad Azam Ansari: writing – original draft, writing – review and editing, visualization, methodology, experiment Mohammad N. Alomary, Yahya F. Jamous, Tekupalli Ravikiran, Siddapura Ramachandrappa Niranjana, M Yasmin Begum, Ayesha Siddiqua: writing – review and editing, formal analysis, visualization, resources. Thimappa Ramachandrappa Lakshmeesha: Concept, writing – review and editing, project administration, supervisor

Corresponding authors

Correspondence to Mohammad Azam Ansari or Thimappa Ramachandrappa Lakshmeesha.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

This article does not contain any work related to human participants or animals performed by any of the authors.

Informed consent

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sultana, S., Ashwini, B.S., Ansari, M.A. et al. Catharanthus roseus-assisted bio-fabricated zinc oxide nanoparticles for promising antibacterial potential against Klebsiella pneumoniae. Bioprocess Biosyst Eng (2024). https://doi.org/10.1007/s00449-024-03001-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00449-024-03001-8

Keywords

Navigation