Skip to main content
Log in

Valorization of coffee bean processing waste for bioethanol production: comparison and evaluation of mass transfer effects in fermentations using free and encapsulated cells of Saccharomyces cerevisiae

  • Research Paper
  • Published:
Bioprocess and Biosystems Engineering Aims and scope Submit manuscript

Abstract

Coffee husk, an agricultural waste abundant in carbohydrates and nutrients, is typically discarded through landfills, mixed with animal fodder, or incinerated. However, in alignment with sustainable development principles, researchers worldwide are exploring innovative methods to harness the value of coffee husk, transforming it into profitable products. One such avenue is the biotechnological approach to bioethanol production from agricultural wastes, offering an eco-friendly alternative to mitigate the adverse effects of fossil fuels. This study delves into the feasibility of utilizing coffee husk as a substrate for bioethanol production, employing and comparing various hydrolysis methods. The enzymatic hydrolysis method outshone thermochemical and thermal approaches, yielding 1.84 and 3.07 times more reducing sugars in the hydrolysate, respectively. In examining bioethanol production, a comparison between free and encapsulated cells in enzyme hydrolysate revealed that free-cell fermentation faced challenges due to cell viability issues. Under specific fermentation conditions, bioethanol yield (0.59 and 0.83 g of bioethanol/g of reducing sugar) and productivity (0.1 and 0.12 g/L h) were achieved for free and encapsulated cells, respectively. However, it was noted that bioethanol production by encapsulated cells was more significantly influenced by internal mass transfer effects, as indicated by the Thiele modulus and effectiveness factor. In conclusion, our findings underscore the potential of coffee husk as a valuable substrate for bioethanol production, showcasing its viability in contributing to sustainable and eco-friendly practices.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data availability

Data will be made available on request.

References

  1. Selo G, Planinić M, Tišma M, Tomas S, Koceva Komlenić D, Bucić-Kojić A (2021) A comprehensive review on valorization of agro-food industrial residues by solid-state fermentation. Foods 10(5):927

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Echeverria MC, Nuti M (2017) Valorisation of the residues of coffee agro-industry: perspectives and limitations. Open Waste Manag J 10(1):13–22

    Article  CAS  Google Scholar 

  3. Zoca SM, Penn CJ, Rosolem CA, Alves AR, Neto LO, Martins MM (2014) Coffee processing residues as a soil potassium amendment. Int J Recycl Organ Waste Agric 3:155–165

    Article  Google Scholar 

  4. Takala B (2021) Utilization of coffee husk and pulp waste as soil amendment. J Natural Sci Res 12(11):10–16

    Google Scholar 

  5. Amena BT, Altenbach H, Tibba GS, Lemu HG (2022) Analysis of the negative impacts of coffee husk on the local environment

  6. Manochio C, Andrade BR, Rodriguez RP, Moraes BS (2017) Ethanol from biomass: a comparative overview. Renew Sustain Energy Rev 80:743–755

    Article  Google Scholar 

  7. Rempel A, de Souza F, Sossella AC, Margarites AL, Astolfi RL, Steinmetz R, Kunz A, Treichel H, Colla LM (2019) Bioethanol from Spirulina platensis biomass and the use of residuals to produce biomethane: an energy efficient approach. Bioresour Technol 288:121588

    Article  CAS  PubMed  Google Scholar 

  8. Muthuvelu KS, Rajarathinam R, Kanagaraj LP, Ranganathan RV, Dhanasekaran K, Manickam NK (2019) Evaluation and characterization of novel sources of sustainable lignocellulosic residues for bioethanol production using ultrasound-assisted alkaline pre-treatment. Waste Manag 87:368–374

    Article  CAS  PubMed  Google Scholar 

  9. Di Donato P, Finore I, Poli A, Nicolaus B, Lama L (2019) The production of second-generation bioethanol: the biotechnology potential of thermophilic bacteria. J Clean Prod. https://doi.org/10.1016/j.jclepro.2019.06.152

    Article  Google Scholar 

  10. Chen J, Zhang B, Luo L, Zhang F, Yi Y, Shan Y, Liu B, Zhou Y, Wang X, Lü X (2021) A review on recycling techniques for bioethanol production from lignocellulosic biomass. Renew Sustain Energy. https://doi.org/10.1016/j.rser.2021.111370

    Article  Google Scholar 

  11. Cangussu LB, Melo JC, Franca AS, Oliveira LS (2021) Chemical characterization of coffee husks, a by-product of Coffea arabica production. Foods 10(12):3125

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Negera T, Alemu T, Beyene D, Asfaw A, Redi M (2015) Bioethanol production from coffee husk using fruit yeast isolates and baker yeast. Adv Biochem Biotechnol 1(1):1–16

    Google Scholar 

  13. Bibra M, Samanta D, Sharma NK, Singh G, Johnson GR, Sani RK (2022) Food waste to bioethanol: opportunities and challenges. Fermentation 9(1):8

    Article  Google Scholar 

  14. Tadesse G (2018) Valorization of coffee husk to bio-ethanol using SHF method. Full-paper

  15. Sime W, Kasirajan R, Latebo S, Mohammed A, Seraw E (2017) Coffee husk highly available in Ethiopia as an alternative waste source for biofuel production. Int J Sci Eng Res 8(7):1874–1880

    Google Scholar 

  16. Gouvea BM, Torres C, Franca AS, Oliveira LS, Oliveira ES (2009) Feasibility of ethanol production from coffee husks. Biotech Lett 31(9):1315–1319

    Article  CAS  Google Scholar 

  17. Divyashri G, Prapulla SG (2015) Mass transfer characterization of gamma-aminobutyric acid production by Enterococcus faecium CFR 3003: encapsulation improves its survival under simulated gastro-intestinal conditions. Bioprocess Biosyst Eng 38:569–574

    Article  CAS  PubMed  Google Scholar 

  18. Sharma S, Nargotra P, Sharma V, Bangotra R, Kaur M, Kapoor N, Bajaj BK (2021) Nanobiocatalysts for efficacious bioconversion of ionic liquid pretreated sugarcane tops biomass to biofuel. Bioresour Technol 333:125191

    Article  CAS  PubMed  Google Scholar 

  19. Byadgi SA, Kalburgi PB (2016) Production of bioethanol from waste newspaper. Procedia Environ Sci 35:555–562

    Article  CAS  Google Scholar 

  20. Robbe-Saule V, Jaumouille V, Prevost M-C, Guadagnini S, Talhouarne C, Mathout H, Norel F (2006) Crl activates transcription initiation of RpoS-regulated genes involved in the multicellular behavior of salmonella enterica serovar typhimurium. J Bacteriol 188(11):3983–3994

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Kucharska K, Rybarczyk P, Hołowacz I, Łukajtis R, Glinka M, Kamiński M (2018) Pretreatment of lignocellulosic materials as substrates for fermentation processes. Molecules 23(11):2937

    Article  PubMed  PubMed Central  Google Scholar 

  22. Binod P, Janu KU, Sindhu R, Pandey A (2011) Hydrolysis of lignocellulosic biomass for bioethanol production. Biofuels. Academic Press Elsevier, Cambridge, pp 229–250

    Chapter  Google Scholar 

  23. Awoke W (2017) Coffee husk highly available in ethiopia as an alternative waste source for biofuel production

  24. Lalak J, Kasprzycka A, Murat A, Paprota EM, Tys J (2014) Obróbka wstępna biomasy bogatej w lignocelulozę w celu zwiększenia wydajności fermentacji metanowej (artykuł przeglądowy). Acta Agrophysica, 21(1)

  25. Karimi K, Emtiazi G, Taherzadeh MJ (2006) Ethanol production from dilute-acid pretreated rice straw by simultaneous saccharification and fermentation with Mucor indicus, Rhizopus oryzae, and Saccharomyces cerevisiae. Enzyme Microb Technol 40(1):138–144

    Article  CAS  Google Scholar 

  26. Dessie W, Zhu J, Xin F, Zhang W, Jiang Y, Wu H, Jiang M (2018) Bio-succinic acid production from coffee husk treated with thermochemical and fungal hydrolysis. Bioprocess Biosyst Eng 41:1461–1470

    Article  CAS  PubMed  Google Scholar 

  27. Vazquez-Chacon N, Pérez-Sariñana BY, Saldaña-Trinidad S, Santis-Espinosa LF, Sebastian PJ (2014) Methodology for the acid hydrolysis of coffee husk. In international materials research congress

  28. Mawaddah M, Setiawan A, Zulnazri Z, Putri AP, Khan NA, Jain V (2022) Hydrolysis of coffee pulp as raw material for bioethanol production: sulfuric acid variations. J Renew Energy Electric Comp Eng 2(1):1–6

    Article  Google Scholar 

  29. Yee KL, Jansen LE, Lajoie CA, Penner MH, Morse L, Kelly CJ (2018) Furfural and 5-hydroxymethyl-furfural degradation using recombinant manganese peroxidase. Enzyme Microb Technol 108:59–65

    Article  CAS  PubMed  Google Scholar 

  30. Baraldi IJ, Giordano RLC, Zangirolami TC (2016) Enzymatic hydrolysis as an environmentally friendly process compared to thermal hydrolysis for instant coffee production. Braz J Chem Eng 33:763–771

    Article  CAS  Google Scholar 

  31. Sabogal-Otalora AM, Palomo-Hernández LF, Piñeros-Castro Y (2022) Sugar production from husk coffee using combined pretreatments. Chem Eng Process Process Intensifi 176:108966

    Article  CAS  Google Scholar 

  32. Febrianto NA (2018) Utilization of coffee skin fiber as potential source of reducing sugar by means on enzymatic hydrolysis. Pelita Perkeb 34(3):166–174

    Google Scholar 

  33. Chang YH, Chang KS, Chen CY, Hsu CL, Chang TC, Jang HD (2018) Enhancement of the efficiency of bioethanol production by Saccharomyces cerevisiae via gradually batch-wise and fed-batch increasing the glucose concentration. Fermentation 4(2):45

    Article  Google Scholar 

  34. Scordia D, Cosentino SL, Jeffries TW (2013) Effectiveness of dilute oxalic acid pretreatment of Miscanthus × giganteus biomass for ethanol production. Biomass Bioenergy 59:540–548. https://doi.org/10.1016/j.biombioe.2013.09.01

    Article  CAS  Google Scholar 

  35. Mussatto SI, Machado EM, Carneiro LM, Teixeira JA (2012) Sugars metabolism and ethanol production by different yeast strains from coffee industry wastes hydrolysates. Appl Energy 92:763–768

    Article  ADS  CAS  Google Scholar 

  36. Ask M, Olofsson K, Di Felice T, Ruohonen L, Penttilä M, Lidén G, Olsson L (2012) Challenges in enzymatic hydrolysis and fermentation of pretreated Arundo donax revealed by a comparison between SHF and SSF. Process Biochem 47(10):1452–1459

    Article  CAS  Google Scholar 

  37. Ingale S, Parnandi VA, Joshi SJ (2019) Bioethanol production using Saccharomyces cerevisiae immobilized in calcium alginate–magnetite beads and application of response surface methodology to optimize bioethanol yield. Sustainable approaches for biofuels production technologies: from current status to practical implementation, 147–181

  38. Chen XH, Wang XT, Lou WY, Li Y, Wu H, Zong MH, Chen XD (2012) Immobilization of Acetobacter sp. CCTCC M209061 for efficient asymmetric reduction of ketones and biocatalyst recycling. Microbl Cell Fact 11:1–14

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

GD: Conceived and designed the experiments; Analyzed and interpreted the data; Wrote the manuscript. NPT, SS, RK and IKJ: Performed the experiments. TPKM: Analysis and revision of manuscript.

Corresponding author

Correspondence to G. Divyashri.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Divyashri, G., Tulsi, N.P., Murthy, T.P.K. et al. Valorization of coffee bean processing waste for bioethanol production: comparison and evaluation of mass transfer effects in fermentations using free and encapsulated cells of Saccharomyces cerevisiae. Bioprocess Biosyst Eng 47, 169–179 (2024). https://doi.org/10.1007/s00449-023-02961-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00449-023-02961-7

Keywords

Navigation