Skip to main content

Advertisement

Log in

Can vitamin E ester derivatives be excellent alternatives of vitamin E: state of art

  • Critical Review
  • Published:
Bioprocess and Biosystems Engineering Aims and scope Submit manuscript

Abstract

Vitamin E (VE) is a natural antioxidant which is widely used in the food fields, while the shortcomings of easy oxidative inactivation and poor water solubility limit its application. Vitamin E esters’ (VEEs) derivatives, such as vitamin E acetate (VEA), are more stable and easier to be absorbed while have similar biological activities and physiological functions compared with VE. In this systematic review, the digestion, absorption and physiological function of VEEs were summarized. To promote their further industrial applications, the synthesis strategies of VEEs were also summarized in-depth. In particular, as a new generation of green solvents, ionic liquids (ILs) have been widely used in enzymatic reactions due to the stabilization and activation of enzymes. Their applications in enzymatic synthesis of VEEs were summarized and discussed. Finally, several future perspectives for developing more efficiency strategies of VEEs synthesis, such as enzyme engineering and design of novel ILs, were also discussed.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data availability

Data will be provided at the request.

Abbreviations

BHA:

Butyl hydroxyanisole

BHT:

Butyl hydroxytoluene

[BMIM]PF6 :

1-Bulky-3-methylimidazolium hexafluorophosphate

CALB:

Candida antarctica lipase B

CRL:

Candida rugosa lipase

ILs:

Ionic liquids

IP:

Isophytol

LDL:

Low-density lipoprotein

PEG:

Polyethylene glycol

TMHQ:

Trimethylhydroquinone

VEPGS:

Vitamin E polyethylene glycol succinate

VE:

Vitamin E

VEA:

Vitamin E acetate

VEEs:

Vitamin E esters

VEF:

Vitamin E ferulic

VELO:

Vitamin E linoleic acid

VEN:

Vitamin E nicotinate

VEO:

Vitamin E oleic acid

VEP:

Vitamin E phosphate

VES:

Vitamin E succinate

VLDL:

Very low-density lipoprotein

α-TTP:

α-Tocopherol transfer protein

References

  1. Niki E, Traber MG (2012) A history of Vitamin E. Ann Nutr Metab 61:207–212

    PubMed  CAS  Google Scholar 

  2. Hunter SC, Cahoon EB (2007) Enhancing vitamin E in oilseeds: unraveling tocopherol and tocotrienol biosynthesis. Lipids 42:97–108

    PubMed  CAS  Google Scholar 

  3. Frank J, Chin XWD, Schrader C, Eckert GP, Rimbach G (2012) Do tocotrienols have potential as neuroprotective dietary factors? Ageing Res Rev 11:163–180

    PubMed  CAS  Google Scholar 

  4. Neuzil J, Weber T, Schröder A, Lu MIN, Ostermann G, Gellert N, Mayne GC, Olejnicka B, Nègre-Salvayre A, Stícha M, Coffey RJ, Weber C (2001) Induction of cancer cell apoptosis by α-tocopheryl succinate: molecular pathways and structural requirements. FASEB J 15:403–415

    PubMed  CAS  Google Scholar 

  5. Gianello R, Libinaki R, Azzi A, Gavin PD, Negis Y, Zingg J-M, Holt P, Keah H-H, Griffey A, Smallridge A, West SM, Ogru E (2005) α-Tocopheryl phosphate: a novel, natural form of vitamin E. Free Radical Biol Med 39:970–976

    CAS  Google Scholar 

  6. Kanchi MM, Shanmugam MK, Rane G, Sethi G, Kumar AP (2017) Tocotrienols: the unsaturated sidekick shifting new paradigms in vitamin E therapeutics. Drug Discovery Today 22:1765–1781

    PubMed  CAS  Google Scholar 

  7. Stergiou P-Y, Foukis A, Filippou M, Koukouritaki M, Parapouli M, Theodorou LG, Hatziloukas E, Afendra A, Pandey A, Papamichael EM (2013) Advances in lipase-catalyzed esterification reactions. Biotechnol Adv 31:1846–1859

    PubMed  CAS  Google Scholar 

  8. Hari Krishna S, Karanth NG (2002) Lipases and lipase-catalyzed esterification reactions in nonaqueous media. Catal Rev 44:499–591

    Google Scholar 

  9. Vekariya RL (2017) A review of ionic liquids: applications towards catalytic organic transformations. J Mol Liq 227:44–60

    CAS  Google Scholar 

  10. Welton T (2018) Ionic liquids: a brief history. Biophys Rev 10:691–706

    PubMed  PubMed Central  CAS  Google Scholar 

  11. Zhao H (2010) Methods for stabilizing and activating enzymes in ionic liquids—a review. J Chem Technol Biotechnol 85:891–907

    CAS  Google Scholar 

  12. Zingg J-M (2007) Molecular and cellular activities of vitamin E analogues. Mini Rev Med Chem 7:545–560

    Google Scholar 

  13. Sies H, Berndt C, Jones DP (2017) Oxidative stress. Annu Rev Biochem 86:715–748

    PubMed  CAS  Google Scholar 

  14. Zaaboul F, Liu Y (2022) Vitamin E in foodstuff: nutritional, analytical, and food technology aspects. Comprehens Rev Food Sci Food Saf 21:964–998

    CAS  Google Scholar 

  15. Szewczyk K, Chojnacka A, Górnicka M (2021) Tocopherols and tocotrienols—bioactive dietary compounds: What is certain, what is doubt? Int J Mol Sci [Online] 22:1

    Google Scholar 

  16. Dwyer J, Nahin RL, Rogers GT, Barnes PM, Jacques PM, Sempos CT, Bailey R (2013) Prevalence and predictors of children’s dietary supplement use: the 2007 National Health Interview Survey. Am J Clin Nutr 97:1331–1337

    PubMed  PubMed Central  CAS  Google Scholar 

  17. Galli F, Azzi A, Birringer M, Cook-Mills JM, Eggersdorfer M, Frank J, Cruciani G, Lorkowski S, Özer NK (2017) Vitamin E: emerging aspects and new directions. Free Radical Biol Med 102:16–36

    CAS  Google Scholar 

  18. Troesch B, Hoeft B, McBurney M, Eggersdorfer M, Weber P (2012) Dietary surveys indicate vitamin intakes below recommendations are common in representative Western countries. Br J Nutr 108:692–698

    PubMed  CAS  Google Scholar 

  19. Kiyose C (2021) Absorption, transportation, and distribution of vitamin E homologs. Free Radical Biol Med 177:226–237

    CAS  Google Scholar 

  20. Reboul E (2017) Vitamin E bioavailability: mechanisms of intestinal absorption in the spotlight. Antioxidants 6:95

    PubMed  PubMed Central  Google Scholar 

  21. Reboul E, Borel P (2011) Proteins involved in uptake, intracellular transport and basolateral secretion of fat-soluble vitamins and carotenoids by mammalian enterocytes. Prog Lipid Res 50:388–402

    PubMed  CAS  Google Scholar 

  22. Goncalves A, Roi S, Nowicki M, Dhaussy A, Huertas A, Amiot M-J, Reboul E (2015) Fat-soluble vitamin intestinal absorption: absorption sites in the intestine and interactions for absorption. Food Chem 172:155–160

    PubMed  CAS  Google Scholar 

  23. Roberts LJ, Oates JA, Linton MF, Fazio S, Meador BP, Gross MD, Shyr Y, Morrow JD (2007) The relationship between dose of vitamin E and suppression of oxidative stress in humans. Free Radical Biol Med 43:1388–1393

    CAS  Google Scholar 

  24. Abraham A, Kattoor AJ, Saldeen T, Mehta JL (2019) Vitamin E and its anticancer effects. Crit Rev Food Sci Nutr 59:2831–2838

    PubMed  CAS  Google Scholar 

  25. Sozen E, Demirel T, Ozer NK (2019) Vitamin E: regulatory role in the cardiovascular system. IUBMB Life 71:507–515

    PubMed  CAS  Google Scholar 

  26. Li X, Sun H, Li H, Hu C, Luo Y, Shi X, Pich A (2021) Multi-responsive biodegradable cationic nanogels for highly efficient treatment of tumors. Adv Func Mater 31:2100227

    CAS  Google Scholar 

  27. Tan S, Zou C, Zhang W, Yin M, Gao X, Tang Q (2017) Recent developments in d-α-tocopheryl polyethylene glycol-succinate-based nanomedicine for cancer therapy. Drug Delivery 24:1831–1842

    PubMed  PubMed Central  CAS  Google Scholar 

  28. Zingg JM (2019) Vitamin E: regulatory role on signal transduction. IUBMB Life 71:456–478

    PubMed  CAS  Google Scholar 

  29. Zhang S, Liang Y, Li L, Chen Y, Wu P, Wei D (2022) Succinate: a novel mediator to promote atherosclerotic lesion progression. DNA Cell Biol 41:285–291

    PubMed  CAS  Google Scholar 

  30. Fiume MM, Bergfeld WF, Belsito DV, Hill RA, Klaassen CD, Liebler DC, Marks JG, Shank RC, Slaga TJ, Snyder PW, Andersen FA, Heldreth B (2018) Safety assessment of tocopherols and tocotrienols as used in cosmetics. Int J Toxicol 37:61S-94S

    PubMed  CAS  Google Scholar 

  31. Jiao Z, Han S, Wang W, Song J, Cheng J (2020) Preparation and optimization of Vitamin E acetate liposomes using a modified RESS process combined with response surface methodology. Part Sci Technol 38:863–875

    CAS  Google Scholar 

  32. Yang C, Wu T, Qi Y, Zhang Z (2018) Recent advances in the application of vitamin E TPGS for drug delivery. Theranostics 8:464–485

    PubMed  PubMed Central  CAS  Google Scholar 

  33. Wang X, Shults NV, Suzuki YJ (2017) Oxidative profiling of the failing right heart in rats with pulmonary hypertension. PLoS ONE 12:e0176887

    PubMed  PubMed Central  Google Scholar 

  34. Marcocci L, Suzuki YJ (2019) Metabolomics studies to assess biological functions of vitamin E nicotinate. Antioxidants 8:10

    Google Scholar 

  35. Bezerra GSN, Pereira MAV, Ostrosky EA, Barbosa EG, De Moura MDFV, Ferrari M, Aragão CFS, Gomes APB (2016) Compatibility study between ferulic acid and excipients used in cosmetic formulations by TG/DTG, DSC and FTIR. J Thermal Anal Calorim 127:1683–1691

    Google Scholar 

  36. Zduńska K, Dana A, Kolodziejczak A, Rotsztejn H (2018) Antioxidant properties of ferulic acid and its possible application. Skin Pharmacol Physiol 31:332–336

    PubMed  Google Scholar 

  37. Ogru E, Gianello R, Libinaki R, Smallridge A, Bak R, Geytenbeek S, Kannar D, West S (2003) Vitamin E phosphate: an endogenous form of vitamin E. Medimond Srl 2003:1

    Google Scholar 

  38. Zingg J-M, Libinaki R, Lai C-Q, Meydani M, Gianello R, Ogru E, Azzi A (2010) Modulation of gene expression by α-tocopherol and α-tocopheryl phosphate in THP-1 monocytes. Free Radical Biol Med 49:1989–2000

    CAS  Google Scholar 

  39. Ghayour-Mobarhan M, Saghiri Z, Ferns G, Sahebkar A (2015) α-Tocopheryl phosphate as a bioactive derivative of vitamin E: a review of the literature. J Dietary Suppl 12:359–372

    CAS  Google Scholar 

  40. Karrer P, Escher R, Fritzsche H, Keller H, Ringier BH, Salomon H (1938) Konstitution und Bestimmung des α-Tocopherols und einiger ähnlicher Verbindungen. Helv Chim Acta 21:939–953

    CAS  Google Scholar 

  41. Bonrath W, Netscher T (2005) Catalytic processes in vitamins synthesis and production. Appl Catal A 280:55–73

    CAS  Google Scholar 

  42. Horiguchi A, Mochida K-I (2014) Enzymatic synthesis of (S)-2-(6-benzyloxy-2,5,7,8-tetramethyl-2-chromanyl)ethanol, intermediate for the synthesis of vitamin E. Biosci Biotechnol Biochem 59:938–939

    Google Scholar 

  43. Wei C, Fu X-F, Wang Z, Yu X-J, Zhang Y-J, Zheng J-Y (2014) Efficient synthesis of vitamin E intermediate by lipase-catalyzed regioselective transesterification. J Mol Catal B Enzym 106:90–94

    CAS  Google Scholar 

  44. Zhu F, Zhong X, Hu M, Lu L, Deng Z, Liu T (2014) In vitro reconstitution of mevalonate pathway and targeted engineering of farnesene overproduction in Escherichia coli. Biotechnol Bioeng 111:1396–1405

    PubMed  CAS  Google Scholar 

  45. Tian M, Zixin D, Tiangang L (2020) The past and present of vitamin E. Synth Biol J 1:174

    Google Scholar 

  46. Kuśtrowski P, Sułkowska D, Chmielarz L, Dziembaj R (2006) Aldol condensation of citral and acetone over mesoporous catalysts obtained by thermal and chemical activation of magnesium–aluminum hydrotalcite-like precursors. Appl Catal A 302:317–324

    Google Scholar 

  47. Torres P, Reyes-Duarte D, López-Cortés N, Ferrer M, Ballesteros A, Plou FJ (2008) Acetylation of vitamin E by Candida antarctica lipase B immobilized on different carriers. Process Biochem 43:145–153

    CAS  Google Scholar 

  48. Xin J-Y, Chen L-L, Zhang Y-X, Wen R-R, Zhao D-M, Xia C-G (2011) Lipase-catalyzed synthesis of α-tocopheryl ferulate. Food Biotechnol 25:43–57

    CAS  Google Scholar 

  49. Rathod S, Bahadur P, Tiwari S (2021) Nanocarriers based on vitamin E-TPGS: design principle and molecular insights into improving the efficacy of anticancer drugs. Int J Pharm 592:120045

    PubMed  CAS  Google Scholar 

  50. Shimizu K, Kondo R, Sakai K, Takeda N, Nagahata T, Oniki T (2001) Novel vitamin E derivative with 4-substituted resorcinol moiety has both antioxidant and tyrosinase inhibitory properties. Lipids 36:1321–1326

    PubMed  CAS  Google Scholar 

  51. Guoren Z, Linghua Z, Yun W (1999) Research on synthesis of polyunsaturated fatty acid in fish oil and vitamin E. J Dalian Inst Light Ind 1999:294–297

    Google Scholar 

  52. Chen H, Meng X, Xu X, Liu W, Li S (2018) The molecular basis for lipase stereoselectivity. Appl Microbiol Biotechnol 102:3487–3495

    PubMed  CAS  Google Scholar 

  53. Geoffry K, Achur RN (2018) Screening and production of lipase from fungal organisms. Biocatal Agric Biotechnol 14:241–253

    Google Scholar 

  54. Mehta A, Bodh U, Gupta R (2017) Fungal lipases: a review. J Biotech Res 8:58–77

    CAS  Google Scholar 

  55. Javed S, Azeem F, Hussain S, Rasul I, Siddique MH, Riaz M, Afzal M, Kouser A, Nadeem H (2018) Bacterial lipases: a review on purification and characterization. Prog Biophys Mol Biol 132:23–34

    PubMed  CAS  Google Scholar 

  56. Pleiss J, Fischer M, Schmid RD (1998) Anatomy of lipase binding sites: the scissile fatty acid binding site. Chem Phys Lipid 93:67–80

    CAS  Google Scholar 

  57. Cabrera Z, Fernandez-Lorente G, Fernandez-Lafuente R, Palomo JM, Guisan JM (2009) Enhancement of Novozym-435 catalytic properties by physical or chemical modification. Process Biochem 44:226–231

    CAS  Google Scholar 

  58. Hu Y, Jiang XJ, Wu SW, Jiang L, Huang H (2013) Synthesis of vitamin E succinate by interfacial activated Candida rugosa lipase encapsulated in sol–gel materials. Chin J Catal 34:1608–1616

    CAS  Google Scholar 

  59. Yin C, Zhang C, Gao M (2011) Enzyme-catalyzed synthesis of vitamin E succinate using a chemically modified novozym-435. Chin J Chem Eng 19:135–139

    CAS  Google Scholar 

  60. Mokhtar NF, Abd Rahman RNZR, Muhd Noor ND, Mohd Shariff F, Mohamad Ali MS (2020) The immobilization of lipases on porous support by adsorption and hydrophobic interaction method. Catalysts 10:1

    Google Scholar 

  61. Ismail AR, Baek K-H (2020) Lipase immobilization with support materials, preparation techniques, and applications: present and future aspects. Int J Biol Macromol 163:1624–1639

    PubMed  CAS  Google Scholar 

  62. Rafiee F, Rezaee M (2021) Different strategies for the lipase immobilization on the chitosan based supports and their applications. Int J Biol Macromol 179:170–195

    PubMed  CAS  Google Scholar 

  63. Filipe HAL, Almeida MCF, Teixeira RR, Esteves MIM, Henriques CA, Antunes FE (2021) Dancing with oils—the interaction of lipases with different oil/water interfaces. Soft Matter 17:7086–7098

    PubMed  CAS  Google Scholar 

  64. Zaks A, Klibanov AM (1984) Enzymatic catalysis in organic media at 100 °C. Science 224:1249–1251

    PubMed  CAS  Google Scholar 

  65. Kumar A, Dhar K, Kanwar SS, Arora PK (2016) Lipase catalysis in organic solvents: advantages and applications. Biol Proc Online 18:2

    Google Scholar 

  66. Kim J (2004) Biocatalytic esterification of β-methylglucoside for synthesis of biocompatible sugar-containing vinyl esters. Chem Eng J 99:15–22

    CAS  Google Scholar 

  67. Liu D, Shi J, Posada LR, Kakuda Y, Xue SJ (2008) Separating tocotrienols from palm oil by molecular distillation. Food Rev Intl 24:376–391

    CAS  Google Scholar 

  68. Jiaojiao X, Bin Z, Ruoyu Z, Onyinye AI (2021) Lipase nanogel catalyzed synthesis of vitamin E succinate in non-aqueous phase. J Sci Food Agric 101:3186–3192

    PubMed  CAS  Google Scholar 

  69. Pathak AK, Ameta C, Ameta R, Punjabi PB (2016) Microwave-assisted organic synthesis in ionic liquids. J Heterocycl Chem 53:1697–1705

    CAS  Google Scholar 

  70. Shi H, Zhang Q (2017) Microwave-assisted synthesis of all-rac-α-tocopherol catalyzed by ionic liquids. IOP Conf Ser Earth Environ Sci 100:012062

    Google Scholar 

  71. Xing H, Wang T, Zhou Z, Dai Y (2006) d,l-α-Tocopherol synthesis catalyzed by the brønsted acidic ionic liquids. Synth Commun 36:2433–2439

    CAS  Google Scholar 

  72. Scammells PJ, Scott JL, Singer RD (2005) Ionic liquids: the neglected issues. Aust J Chem 58:155–169

    CAS  Google Scholar 

  73. Tao Y, Dong R, Pavlidis IV, Chen B, Tan T (2016) Using imidazolium-based ionic liquids as dual solvent-catalysts for sustainable synthesis of vitamin esters: inspiration from bio- and organo-catalysis. Green Chem 18:1240–1248

    CAS  Google Scholar 

  74. Yang Q, Xing H, Cao Y, Su B, Yang Y, Ren Q (2009) Selective separation of tocopherol homologues by liquid−liquid extraction using ionic liquids. Ind Eng Chem Res 48:6417–6422

    CAS  Google Scholar 

  75. Łuczak J, Jungnickel C, Joskowska M, Thöming J, Hupka J (2009) Thermodynamics of micellization of imidazolium ionic liquids in aqueous solutions. J Colloid Interface Sci 336:111–116

    PubMed  Google Scholar 

  76. Łuczak J, Hupka J, Thöming J, Jungnickel C (2008) Self-organization of imidazolium ionic liquids in aqueous solution. Colloids Surfaces A Physicochem Eng Aspects 329:125–133

    Google Scholar 

  77. Pan S, Liu X, Xie Y, Yi Y, Li C, Yan Y, Liu Y (2010) Esterification activity and conformation studies of Burkholderia cepacia lipase in conventional organic solvents, ionic liquids and their co-solvent mixture media. Biores Technol 101:9822–9824

    CAS  Google Scholar 

  78. de Diego T, Lozano P, Gmouh S, Vaultier M, Iborra JL (2005) Understanding structure−stability relationships of candida antartica lipase B in ionic liquids. Biomacromol 6:1457–1464

    Google Scholar 

  79. Zhao H, Baker GA, Song Z, Olubajo O, Zanders L, Campbell SM (2009) Effect of ionic liquid properties on lipase stabilization under microwave irradiation. J Mol Catal B Enzym 57:149–157

    CAS  Google Scholar 

  80. Zou B, Yan Y, Xia J, Zhang L, Adesanya IO (2020) Enhancing bio-catalytic activity and stability of lipase nanogel by functional ionic liquids modification. Colloids Surf B Biointerfaces 195:111275

    PubMed  CAS  Google Scholar 

  81. Elgharbawy AA, Riyadi FA, Alam MZ, Moniruzzaman M (2018) Ionic liquids as a potential solvent for lipase-catalysed reactions: a review. J Mol Liq 251:150–166

    CAS  Google Scholar 

  82. Liu Y, Chen D, Yan Y (2013) Effect of ionic liquids, organic solvents and supercritical CO2 pretreatment on the conformation and catalytic properties of Candida rugosa lipase. J Mol Catal B Enzym 90:123–127

    CAS  Google Scholar 

  83. Jiang Y, Guo C, Xia H, Mahmood I, Liu C, Liu H (2009) Magnetic nanoparticles supported ionic liquids for lipase immobilization: enzyme activity in catalyzing esterification. J Mol Catal B Enzym 58:103–109

    CAS  Google Scholar 

  84. Nagy K, Ramos L, Courtet-Compondu MC, Braga-Lagache S, Redeuil K, Lobo B, Azpiroz F, Malagelada JR, Beaumont M, Moulin J, Acquistapache S, Sagalowicz L, Kussmann M, Santos J, Holst B, Williamson G (2013) Double-balloon jejunal perfusion to compare absorption of vitamin E and vitamin E acetate in healthy volunteers under maldigestion conditions. Eur J Clin Nutr 67:202–206

    PubMed  CAS  Google Scholar 

  85. Mikheev VB, Ivanov A (2022) Analysis of the aerosol generated from tetrahydrocannabinol, vitamin E acetate, and their mixtures. Toxics 10:1

    Google Scholar 

  86. Vas G (2021) Evaluation of vitamin E acetate volatile degradation products: a possible connection to the EVALI epidemic. Rev Sep Sci 3:e21004–e21004

    Google Scholar 

  87. Ruiz-Tovar J, Garcia A, Ferrigni C, Duran M (2020) Application of vitamin E acetate on staple lines and anastomoses of Roux-en-Y gastric bypass: impact on postoperative pain and acute phase reactants. Obes Surg 30:2988–2993

    PubMed  Google Scholar 

  88. Panin G, Strumia R, Ursini F (2004) Topical α-tocopherol acetate in the bulk phase: eight years of experience in skin treatment. Ann N Y Acad Sci 1031:443–447

    PubMed  CAS  Google Scholar 

  89. Scott AE, Alcock J, Carlile MJ, Griffiths HR (2007) Metabolism of vitamin E acetate by reconstituted human gingival and buccal epithelium. Int Dent J 57:135–139

    Google Scholar 

  90. Chandra AK, Ghosh R, Chatterjee A, Sarkar M (2007) Amelioration of vanadium-induced testicular toxicity and adrenocortical hyperactivity by vitamin E acetate in rats. Mol Cell Biochem 306:189–200

    PubMed  CAS  Google Scholar 

  91. Neuzil J, Weber T, Gellert N, Weber C (2001) Selective cancer cell killing by α-tocopheryl succinate. Br J Cancer 84:87–89

    PubMed  PubMed Central  CAS  Google Scholar 

  92. Neuzil J, Weber T, Terman A, Weber C, Brunk UT (2001) Vitamin E analogues as inducers of apoptosis: implications for their potential antineoplastic role. Redox Rep 6:143–151

    PubMed  CAS  Google Scholar 

  93. Guo Y, Luo J, Tan S, Otieno BO, Zhang Z (2013) The applications of vitamin E TPGS in drug delivery. Eur J Pharm Sci 49:175–186

    PubMed  CAS  Google Scholar 

  94. Sheng X, Fan L, He C, Zhang K, Mo X, Wang H (2013) Vitamin E-loaded silk fibroin nanofibrous mats fabricated by green process for skin care application. Int J Biol Macromol 56:49–56

    PubMed  CAS  Google Scholar 

  95. Mi Y, Zhao J, Feng S-S (2012) Vitamin E TPGS prodrug micelles for hydrophilic drug delivery with neuroprotective effects. Int J Pharm 438:98–106

    PubMed  CAS  Google Scholar 

  96. Kutty RV, Feng SS (2013) Cetuximab conjugated vitamin E TPGS micelles for targeted delivery of docetaxel for treatment of triple negative breast cancers. Biomaterials 34:10160–10171

    PubMed  CAS  Google Scholar 

  97. Funasaka Y, Komoto M, Ichihashi M (2000) Depigmenting effect of α-tocopheryl ferulate on normal human melanocytes. Pigment Cell Res 13:170–174

    PubMed  Google Scholar 

  98. Zingg JM, Libinaki R, Meydani M, Azzi A (2014) Modulation of phosphorylation of tocopherol and phosphatidylinositol by hTAP1/SEC14L2-mediated lipid exchange. PLoS ONE 9:10

    Google Scholar 

  99. Zingg J-M, Azzi A, Meydani M (2017) α-Tocopheryl phosphate induces VEGF expression via CD36/PI3Kγ in THP-1 monocytes. J Cell Biochem 118:1855–1867

    PubMed  CAS  Google Scholar 

  100. Rezk BM, van der Vijgh WJ, Bast A, Haenen GR (2007) Alpha-tocopheryl phosphate is a novel apoptotic agent. Front Biosci Landm 12:2013–2019

    CAS  Google Scholar 

  101. Birringer M, Eytina JH, Salvatore BA, Neuzil J (2003) Vitamin E analogues as inducers of apoptosis: structure–function relation. Br J Cancer 88:1948–1955

    PubMed  PubMed Central  CAS  Google Scholar 

  102. Rezk BM, Vijgh WJFVD, Bast A, Haenen GRMM (2007) Alpha-tocopheryl phosphate is a novel apoptotic agent. FBL 12:2013–2019

    CAS  Google Scholar 

  103. Chun-Yan WU, Cai M, Ling-Hong YI (2011) Preparation of α-tocopherol acetate. Technol Dev Chem Ind 76:281–308

    Google Scholar 

  104. Yan-Sheng Z, Qian M (2009) Study on synthesis and storage stability of vitamin E succinate. Chem Bioeng 26:26–28

    Google Scholar 

  105. Ping L, Sheng LJ (2006) Study on the synthes is of α-tocopherol oleate. Food Sci Technol 2006:172–174

    Google Scholar 

  106. Jing Z, Xiang-Wen K (2003) Synthesis of vitamin E linoleate. Chin J Pharmaceut 2003:6–15

    Google Scholar 

  107. Hao Y, Lin Y, Liang SL (2018) Efficient expression of candida rugosa lipase CRL1 in pichia pastoris and its application for synthesis of vitamin E acetate. Modern Food Sci Technol 34:126–187

    CAS  Google Scholar 

  108. Jiang X-J, Hu Y, Jiang L, Gong J-H, Huang H (2013) Synthesis of vitamin E succinate from Candida rugosa lipase in organic medium. Chem Res Chin Univ 29:223–226

    CAS  Google Scholar 

  109. Niki E (2014) Role of vitamin E as a lipid-soluble peroxyl radical scavenger: in vitro and in vivo evidence. Free Radical Biol Med 66:3–12

    CAS  Google Scholar 

Download references

Acknowledgements

The project is supported by the National Natural Science Foundation of China (No. 21676143), and the Jiangsu Synergetic Innovation Center for Advanced Bio-Manufacture, Nanjing TECH University Research Startup Funds (No. 39828130).

Author information

Authors and Affiliations

Authors

Contributions

GM: data curation, investigation, writing—original draft, and formal analysis. WC: writing—review and editing, and project administration. YQ: data curation and investigation. ZL: software and visualization. ZZ: software and methodology. BN: supervision, writing—review and editing, validation, and funding acquisition. YH: supervision and funding acquisition.

Corresponding authors

Correspondence to Binbin Nian or Yi Hu.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ma, G., Chong, W., Qi, Y. et al. Can vitamin E ester derivatives be excellent alternatives of vitamin E: state of art. Bioprocess Biosyst Eng 46, 1695–1709 (2023). https://doi.org/10.1007/s00449-023-02918-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00449-023-02918-w

Keywords

Navigation