Skip to main content
Log in

Green ultrasonication-assisted extraction of microalgae Chlorella sp. for polysaturated fatty acid (PUFA) rich lipid extract using alternative solvent mixture

  • Research Paper
  • Published:
Bioprocess and Biosystems Engineering Aims and scope Submit manuscript

Abstract

Conventionally, microalgal lipid extraction uses volatile organic compounds as an extraction solvent. However, these solvents are harmful to human and environmental health. Therefore, this study evaluated the feasibility of alternative green solvents, namely, ethanol, dimethyl carbonate (DMC), cyclopentyl methyl ether (CPME), and 2-methyltetrahydrofuran (2-MeTHF) in lipid extraction from Chlorella sp. via ultrasound-assisted extraction (UAE). This study indicated that extraction parameters, such as ethanol-to-2-MeTHF ratio, solvent-to-biomass ratio, temperature, and time, significantly affected the crude lipid yield (P < 0.05). The highest crude lipid yield of 25.05 ± 0.924% was achieved using ethanol–2-MeTHF mixture (2:1, v/v) with a solvent-to-biomass ratio of 20:1 (v/w) at 60 °C for 25 min accompanying 100 W and 40 kHz. Ethanol-2-MeTHF-extracted lipids showed dominance in linoleic acid, α-linolenic acid, and palmitic acid. Overall this findings supported UAE using ethanol and 2-MeTHF as extraction solvents is a promising green alternative to conventional solvent extraction of lipids from microalgae.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Morales M, Aflalo C, Bernard O (2021) Microalgal lipids: a review of lipids potential and quantification for 95 phytoplankton species. Biomass Bioenergy 150:106–108

    Article  Google Scholar 

  2. Gour RS, Garlapati VK, Kant A (2020) Effect of salinity stress on lipid accumulation in Scenedesmus sp. and Chlorella sp.: feasibility of stepwise culturing. Curr Microbiol 77(5):779–785

    Article  CAS  PubMed  Google Scholar 

  3. Savvidou MG, Boli E, Lohothetis D, Lymperopoulou T, Ferraro A, Louli V, Mamma D, Kekos D, Magoulas K, Kolisis FN (2020) A study on the effect of macro-and micro-nutrients on Nannochloropsis oceanica growth, fatty acid composition and magnetic harvesting efficiency. Plants 2020:9

    Google Scholar 

  4. Bellou S, Baeshen M, Elazzazy AM, Aggeli D, Sayegh F, Aggelis G (2014) Microalgal lipids biochemistry and biotechnological perspectives. Biotechnol Adv 32(8):1476–1493

    Article  CAS  PubMed  Google Scholar 

  5. Cheirsilp B, Thawechai T, Prasertsan P (2017) Immobilized oleaginous microalgae for production of lipid and phytoremediation of secondary effluent from palm oil mill in fluidized bed photobioreactor. Bioresour Technol 241:787–794

    Article  CAS  Google Scholar 

  6. Wang Q, Oshita K, Takaoka M (2021) Effective lipid extraction from undewatered microalgae liquid using subcritical dimethyl ether. Biotechnol Biofuels 14(17):1–13

    CAS  Google Scholar 

  7. Kamaroddin MF, Rahaman A, Gilmour DJ, Zimmerman WB (2020) Optimization and cost estimation of microalgal lipid extraction using ozone-rich microbubbles for biodiesel production. Biocatal Agric Biotechnol 23(101462):1–10

    Google Scholar 

  8. Lin CC, Hong PKA (2013) A new processing scheme from algae suspension to collected lipid using sand filtration and ozonation. Algal Res 2(4):378–384

    Article  Google Scholar 

  9. Kim YH, Park S, Kim MH, Choi YK, Yang YH, Kim HJ, Kim H, Kim HS, Song KG, Lee SH (2013) Ultrasound-assisted extraction of lipids from Chlorella vulgaris using [Bmim][MeSO4]. Biomass Bioenergy 56:99–103

    Article  CAS  Google Scholar 

  10. de Jesus SS, Filho RM (2020) Recent advances in lipid extraction using green solvents. Renew Sust Energ Rev 133(110289):1–35

    Google Scholar 

  11. Gorgich M, Mata TM, Martin AA, Branco-Vieira M, Caetano NS (2020) Comparison of different lipid extraction procedures applied to three microalgal species. Energy Rep 6:477–482

    Article  Google Scholar 

  12. Gasser MS, Abdel-Rahman RO (2021) Sustainability of solvent extraction techniques in pollution prevention and control. In: Rahman ROA, Hussain CM (eds) Handbook of advanced approaches towards pollution prevention and control. Elsevier, London, pp 33–66

    Chapter  Google Scholar 

  13. Mojica CV, Pasol E, Dizon M, Kiat W, Reynold T, Dominguez J, Valencia V, Tuano BJ (2021) Chronic methanol toxicity through topical and inhalational routes presenting as vision loss and restricted diffusion of the optic nerves on MRI: a case report and literature review. eNeurological Sci 20:100258

    Article  Google Scholar 

  14. Picot-Allain C, Mahomoodally MF, Gunes AK, Zengin G (2021) Conventional versus green extraction techniques—a comparative perspective. Curr Opin Food Sci 40:144–156

    Article  CAS  Google Scholar 

  15. Zhou X, Jin W, Tu R, Guo Q, Han SF, Chen C, Wang Q, Liu Q, Jensen PD, Wang Q (2019) Optimization of microwave assisted lipid extraction from microalga Scenedesmus obliquus grown on municipal wastewater. J Clean Prod 221:502–508

    Article  CAS  Google Scholar 

  16. Neto AMP, de Souza RAS, Leon-Nino AD, da Costa JDA, Tiburcia RS, Nunes TA, de Mello TCS, Kanemoto FT, Saldanha-Correa FMP, Gianesella SMF (2013) Improvement in microalgae lipid extraction using a sonication-assisted method. Renew Energ 55:525–531

    Article  Google Scholar 

  17. Mubarak M, Shaija A, Suchithra TV (2016) Ultrasonication: an effective pre-treatment method for extracting lipid from Salvinia molesta for biodiesel production. Resource Efficient Technol 2(3):126–132

    Article  Google Scholar 

  18. Saleem M, Hanif MU, Bahadar A, Iqbal H, Capareda SC, Waqas A (2020) The effects of hot water and ultrasonication pretreatment of microalgae (Nannochloropsis oculata) on biogas production in anaerobic co-digestion with cow manure. Processes 8:1–10

    Article  Google Scholar 

  19. Jeon BH, Choi JA, Kim HC, Hwang JH, Abou-Shanab RA, Dempsey BA, Regan JM, Kim JR (2013) Ultrasonic disintegration of microalgal biomass and consequent improvement of bioaccessibility/bioavailability in microbial fermentation. Biotechnol Biofuels 6(1):37

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Paul R, Silkina A, Melville L, Suhartini S, Sulu M (2022) Optimisation of ultrasound pretreatment of microalgal biomass for effective biogas production through anaerobic digestion process. Energies 16:1–13

    Google Scholar 

  21. Fattah IMR, Noraini MY, Mofijur M, Silitonga AS, Badruddin IA, Yunus-Khan TM, Ong HC, Mahlia TMI (2020) Lipid extraction maximization and enzymatic synthesis of biodiesel from microalgae. Appl Sci 10:1–18

    Article  Google Scholar 

  22. Araujo GS, Matos LJBL, Fernandes JO, Cartaxo SJM, Goncalves LRB, Fernendes FAN, Farias WRL (2013) Extraction of lipids from microalgae by ultrasound application: prospection of the optimal extraction method. Ultrason Sonochem 20(1):95–98

    Article  CAS  PubMed  Google Scholar 

  23. Ma G, Mu R, Capareda S, Qi F (2019) Use of ultrasound for aiding lipid extraction and biodiesel production of microalgae harvested by chitosan. Environ Technol 42(26):4064–4071

    Article  Google Scholar 

  24. Rokicka M, Zielinski M, Dudek M, Debowski M (2020) Effects of ultrasonic and microwave pretreatment on lipid extraction of microalgae and methane production from the residual extracted biomass. BioEnerg Res 14(3):752–760

    Article  Google Scholar 

  25. Wan Mahmood WMA, Theodoropoulos C, Gonzalez-Miquel M (2017) Enhanced microalgal lipid extraction using bio-based solvents for sustainable biofuel production. Green Chem 19(23):5723–5733

    Article  CAS  Google Scholar 

  26. Hadiyanto H, Adetya NP (2018) Response surface optimization of lipid and protein extractions from Spirulina platensis using ultrasound assisted osmotic shock method. Food Sci Biotechnol 27(5):1361–1368

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Kassim MA, Meng TK, Serri NA (2019) Alkaline-assisted microwave pretreatment of Tetraselmis suecica biomass for fed-batch enzymatic hydrolysis. J Eng Technol Sci 51(2):272–289

    Article  CAS  Google Scholar 

  28. Chemat F, Rombaut N, Anne-Gaelle S, Meullemiestre A, Fabiano-Tixier AS, Abert-Vian M (2017) Ultrasound assisted extraction of food and natural products. Mechanisms, techniques, combinations, protocols and applications. A review. Ultrason Sonochem 34:540–560

    Article  CAS  PubMed  Google Scholar 

  29. Panda D, Manickam S (2019) Cavitation technology—the future of greener extraction method: a review on the extraction of natural products and process intensification mechanisms and perspectives. Appl Sci 9(4):1–21

    Article  Google Scholar 

  30. Tantichantakarun M, Chetpattananondh P, Ratanawilai S (2019) Chlorella sp. extraction and estimation of fuel properties of lipids derived from FFA profiles. Eng Appl Sci Res 46(2):106–113

    Google Scholar 

  31. Sati H, Mitra M, Mishra S, Baredar P (2019) Microalgal lipid extraction strategies for biodiesel production: a review. Algal Res 38(101413):1–12

    Google Scholar 

  32. Saini RK, Prasad P, Shang X, Young-Soo K (2021) Advances in lipid extraction methods: a review. Int J Mol Sci 22:1–19

    Article  Google Scholar 

  33. Nigam H, Malik A, Singh V (2021) A novel nanoemulsion-based microalgal growth medium for enhanced biomass production. Biotechnol Biofuels 14(1):1–18

    Article  Google Scholar 

  34. Zhou W, Wang Z, Alam MD, Xu J, Zhu S, Yuan Z, Huo S, Guo Y, Qin L, Ma L (2019) Repeated utilization of ionic liquid to extract lipid from algal biomass. Int J Polym Sci 2019:1–7

    Google Scholar 

  35. dos Santos RR, Moreira DM, Kunigami CN, Aranda DAG, Teixeira CMLL (2015) Comparison between several methods of total lipid extraction from Chlorella vulgaris biomass. Ultrason Sonochem 22:95–99

    Article  PubMed  Google Scholar 

  36. Halim R, Danquah MK, Webley PA (2012) Extraction of oil from microalgae for biodiesel production: a review. Biotechnol Adv 30(3):709–732

    Article  CAS  PubMed  Google Scholar 

  37. Amin M, Chetpattananondh P (2019) Enhanced lipid recovery from marine Chlorella sp. by ultrasonication with an integrated process approach for wet and dry biomass. BioEnerg Res 12(3):665–679

    Article  CAS  Google Scholar 

  38. Li ZJ, Feng-Jian Y, Yang L, Yuan-Gang Z (2016) Ultrasonic extraction of oil from Caesalpinia spinosa (Tara) seeds. J Chem 2016:1–6

    Google Scholar 

  39. Kumar K, Srivastav S, Sharanagat VS (2021) Ultrasound assisted extraction (UAE) of bioactive compounds from fruit and vegetable processing by-products: a review. Ultrason Sonochem 70(105325):1

    Google Scholar 

  40. Zou X, Xu K, Chang W, Qu Y, Li Y (2021) Rapid extraction of lipid from wet microalgae biomass by a novel buoyant beads and ultrasound assisted solvent extraction method. Algal Res 58(102431):1–7

    Google Scholar 

  41. Syahir A, Sulaiman S, Mel M, Othman M, Sulaiman SZ (2020) An overview: analysis of ultrasonic-assisted extraction’s parameters and its process. IOP Conf Ser Mater Sci Eng 778(012165):1–8

    Google Scholar 

  42. Hao X, Suo H, Peng H, Xu P, Gao X, Du S (2021) Simulation and exploration of cavitation process during microalgae oil extracting with ultrasonic-assisted for hydrogen production. Int J Hydrog Energ 46(3):2890–2898

    Article  CAS  Google Scholar 

  43. Wu J, Alam MA, Ying P, Dalong H, Zhongming W, Tiejun W (2017) Enhanced extraction of lipids from microalgae with eco-friendly mixture of methanol and ethyl acetate for biodiesel production. J Taiwan Inst Chem Eng 71:323–329

    Article  CAS  Google Scholar 

  44. Señoráns M, Castejón N, Señoráns FJ (2020) Advanced extraction of lipids with DHA from Isochrysis galbana with enzymatic pre-treatment combined with pressurized liquids and ultrasound assisted extractions. Molecules 25(14):1–14

    Article  Google Scholar 

  45. Oroian M, Ursachi F, Dranca F (2020) Influence of ultrasonic amplitude, temperature, time and solvent concentration on bioactive compounds extraction from propolis. Ultrason Sonochem 64:105021

    Article  CAS  PubMed  Google Scholar 

  46. Amaro HM, Guedes AC, Preto M, Sousa-Pinto I, Malcata FX (2018) Gloeothece sp. as a nutraceutical source-An improved method of extraction of carotenoids and fatty acids. Mar Drugs 16(9):1–17

    Article  Google Scholar 

  47. Peng K, Qin FGF, Jiang R, Kang S (2020) Interpreting the influence of liquid temperature on cavitation collapse intensity through bubble dynamic analysis. Ultrason Sonochem 69:1–11

    Article  Google Scholar 

  48. Jeevan Kumar SP, Banerjee R (2019) Enhanced lipid extraction from oleaginous yeast biomass using ultrasound assisted extraction: a greener and scalable process. Ultrason Sonochem 52:25–32

    Article  CAS  PubMed  Google Scholar 

  49. Sivaramakrishnan R, Incharoensakdi A (2020) Plant hormone induced enrichment of Chlorella sp. omega-3 fatty acids. Biotechnol Biofuels 13(7):1–14

    Google Scholar 

  50. Yang L, Yin P, Fan H, Xue Q, Li K, Li X, Sun L, Liu Y (2017) Response surface methodology optimization of ultrasonic-assisted extraction of acer Truncatym leaves for maximal phenolic yield and antixidant activity. Mol 22(2):1–21

    Article  Google Scholar 

  51. Shah Buddin MMH, Amat Rithuan MAR, Aiman Surni MS, Jamal NHM, Faiznur MF (2018) Ultrasonic assisted extraction (UAE) of Moringa oleifera seed oil: kinetic study. ASM Sci J 11(3):158–166

    Google Scholar 

  52. Toumi A, Politaeva N, Durovic S, Mukhametova L, Ilyashenko S (2022) Obtaining DHA-EPA oil concentrates from the biomass of microalga Chlorella sorokiniana. Resouces 11(20):1–13

    Google Scholar 

  53. Rismani S, Shariati M et al (2017) Changes of the total lipid and omega-3-fatty acid contents in two microalgae Dunaliella salina and Chlorella vulgaris under salt stress. Braz Arch Biol Technol 60:1–12

    Article  Google Scholar 

  54. Guo H, Cheng J, Mao Y, Qian L, Yang W, Park JY (2022) Synergistic effect of ultrasound and switchable hydrophilicity solvent promotes microalgal cell disruption and lipid extraction for biodiesel production. Bioresour Technol 343:1–7

    Article  Google Scholar 

  55. Ramola B, Kumar V, Nanda M, Mishra Y, Tyagi T, Gupta A, Sharma N (2019) Evaluation, comparison of different solvent extraction, cell disruption methods and hydrothermal liquefaction of Oedogonium macroalgae for biofuel production. Biotechnol Rep 22:1–8

    Google Scholar 

  56. Escorsim AM, da Rocha G, Vargas JVC, Mariano AB, Ramos LP, Corazza M, Cordeiro CS (2018) Extraction of Acutodesmus obliquus lipids using a mixture of ethanol and hexane as solvent. Biomass Bioenergy 108:470–478

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to thank School of Industrial Technology, Universiti Sains Malaysia for support this work. The authors would also like to acknowledge the USM under Grant 304.PTEKIND.6501151.N132 for the financial support to complete this project.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohd Asyraf Kassim.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hui, G.T., Meng, T.K. & Kassim, M.A. Green ultrasonication-assisted extraction of microalgae Chlorella sp. for polysaturated fatty acid (PUFA) rich lipid extract using alternative solvent mixture. Bioprocess Biosyst Eng 46, 1499–1512 (2023). https://doi.org/10.1007/s00449-023-02917-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00449-023-02917-x

Keywords

Navigation