Skip to main content

Advertisement

Log in

Plumeria alba flower extract-mediated synthesis of recyclable chitosan-coated cadmium nanoparticles for pest control and dye degradation

  • Research Paper
  • Published:
Bioprocess and Biosystems Engineering Aims and scope Submit manuscript

Abstract

In the current scenario, many synthetic chemicals have used long-term to control pests and mosquitoes, leading to the resistance of strains and toxicity effect on human beings. To overcome the adverse problem in recent advances, the scientific community is looking into nanofabricated pesticides and mosquitoes. This study aims to synthesize the recyclable chitosan-coated cadmium nanoparticles (Ch-CdNps) using Plumeria alba flower extract, which was further applied for insecticidal and mosquitocidal activities. The synthesized Ch-CdNps were confirmed by UV spectroscopy and FTIR analysis. The XRD, TEM, and DLS results confirmed the crystallinity with a spherical shape at 80–100 nm. The insecticidal activity proves that Ch-CdNps inhibited Helicoverpa armigera and Spodoptera litura at 100 ppm. In mosquitocidal, LC50 values of larvicidal of 1st instar were 4.116, 4.33, and 4.564 µg/mL, and the remaining three stages of instars, pupicidal, adulticidal, longevity, fecundity, and ovicidal assays inhibit the Anopheles stephensi followed by Aedes aegypti and Culex quinquefasciatus. Further, the first-order kinetics of photocatalytic degradation of methylene blue and methyl orange was confirmed. Based on the obtained results, Ch-CdNps can inhibit the pest, mosquitoes, and photocatalytic degradation.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

Data availability

The data used to support the findings of the study are included within the article.

References

  1. Bayda S, Adeel M, Tuccinardi T, Cordani M, Rizzolio F (2020) The history of nanoscience and nanotechnology: from chemical–physical applications to nanomedicine. Molecules 25(1):112. https://doi.org/10.3390/molecules25010112

    Article  CAS  Google Scholar 

  2. McNamara K, Tofail SA (2017) Nanoparticles in biomedical applications. Adv Phys X 2(1):54–88. https://doi.org/10.1080/23746149.2016.1254570

    Article  CAS  Google Scholar 

  3. Morin-Crini N, Lichtfouse E, Torri G, Crini G (2019) Applications of chitosan in food, pharmaceuticals, medicine, cosmetics, agriculture, textiles, pulp and paper, biotechnology, and environmental chemistry. Environ Chem Lett 17(4):1667–1692. https://doi.org/10.1007/s10311-019-00904-x

    Article  CAS  Google Scholar 

  4. Kuppusamy P, Yusoff MM, Maniam GP, Govindan N (2016) Biosynthesis of metallic nanoparticles using plant derivatives and their new avenues in pharmacological applications–An updated report. Saudi Pharm J 24(4):473–484. https://doi.org/10.1016/j.jsps.2014.11.013

    Article  PubMed  Google Scholar 

  5. Khandel P, Yadaw RK, Soni DK, Kanwar L, Shahi SK (2018) Biogenesis of metal nanoparticles and their pharmacological applications: present status and application prospects. J NANOSTRUCTURE CHEM 3:217–254. https://doi.org/10.1007/s40097-018-0267-4

    Article  CAS  Google Scholar 

  6. Ahmad J, Majid K (2018) Enhanced visible light driven photocatalytic activity of CdO–graphene oxide heterostructures for the degradation of organic pollutants. New J Chem 42(5):3246–3259. https://doi.org/10.1039/C7NJ03617E

    Article  CAS  Google Scholar 

  7. Mollavali M, Falamaki C, Rohani S (2018) Efficient light harvesting by NiS/CdS/ZnS NPs incorporated in C, N-co-doped-TiO2 nanotube arrays as visible-light sensitive multilayer photoanode for solar applications. Int J Hydrog Energy 43(19):9259–9278. https://doi.org/10.1016/j.ijhydene.2018.03.102

    Article  CAS  Google Scholar 

  8. Angel N, Vijayaraghavan SN, Yan F, Kong L (2020) Electrospun cadmium selenide nanoparticles-loaded cellulose acetate fibers for solar thermal application. Nanomater 10(7):1329. https://doi.org/10.3390/nano10071329

    Article  CAS  Google Scholar 

  9. Rahman A, Aadil M, Zulfiqar S, Alsafari IA, Shahid M, Agboola PO, Warsi MF, Abdel-Haliem ME (2021) Fabrication of binary metal substituted CdO with superior aptitude for dye degradation and antibacterial activity. Ceram Int 47(6):8082–8093. https://doi.org/10.1016/j.ceramint.2020.11.163

    Article  CAS  Google Scholar 

  10. Rompelberg C, Heringa MB, van Donkersgoed G, Drijvers J, Roos A, Westenbrink S, Peters R, van Bemmel G, Brand W, Oomen AG (2016) Oral intake of added titanium dioxide and its nanofraction from food products, food supplements and toothpaste by the Dutch population. Nanotoxicology 10(10):1404–1414. https://doi.org/10.1080/17435390.2016.1222457

    Article  CAS  PubMed  Google Scholar 

  11. Dar MA, Shaikh AF, Pawar KD, Xie R, Sun J, Kandasamy S, Pandit RS (2021) Evaluation of cellulose degrading bacteria isolated from the gut-system of cotton bollworm, Helicoverpa armigera and their potential values in biomass conversion. PeerJ 9:e11254. https://doi.org/10.7717/peerj.11254

    Article  Google Scholar 

  12. Yan X, Shahid Arain M, Lin Y, Gu X, Zhang L, Li J, Han R (2020) Efficacy of entomopathogenic nematodes against the tobacco cutworm, Spodoptera litura (Lepidoptera: Noctuidae). J Econ Entomol 113(1):64–72. https://doi.org/10.1093/jee/toz262

    Article  PubMed  Google Scholar 

  13. Pavoni L, Pavela R, Cespi M, Bonacucina G, Maggi F, Zeni V, Canale A, Lucchi A, Bruschi F, Benelli G (2019) Green micro-and nanoemulsions for managing parasites, vectors and pests. Nanomater 9(9):1285. https://doi.org/10.3390/nano9091285

    Article  CAS  Google Scholar 

  14. Inziani M, Adungo F, Awando J, Kihoro R, Inoue S, Morita K, Obimbo E, Onyango F, Mwau M (2020) Seroprevalence of yellow fever, dengue, West Nile and chikungunya viruses in children in Teso South Sub-County, Western Kenya. Int J Infect Dis 91:104–110. https://doi.org/10.1016/j.ijid.2019.11.004

    Article  CAS  PubMed  Google Scholar 

  15. Benelli G, Canale A, Higuchi A, Murugan K, Pavela R, Nicoletti M (2016) The recent outbreaks of Zika virus: Mosquito control faces a further challenge. Asian Pac J Trop Dis 6(4):253–258. https://doi.org/10.1016/S2222-1808(15)61025-8

    Article  Google Scholar 

  16. Palani G, Arputhalatha A, Kannan K, Lakkaboyana SK, Hanafiah MM, Kumar V, Marella RK (2021) Current trends in the application of nanomaterials for the removal of pollutants from industrial wastewater treatment—a review. Molecules 9:2799. https://doi.org/10.3390/molecules26092799

    Article  CAS  Google Scholar 

  17. Singh P, Shandilya P, Raizada P, Sudhaik A, Rahmani-Sani A, Hosseini-Bandegharaei A (2020) Review on various strategies for enhancing photocatalytic activity of graphene based nanocomposites for water purification. Arab J Chem 13(1):3498–3520. https://doi.org/10.1016/j.arabjc.2018.12.001

    Article  CAS  Google Scholar 

  18. Jacob J, Haponiuk JT, Thomas S, Gopi S (2018) Biopolymer based nanomaterials in drug delivery systems: a review. Mater Today Chem 9:43–55. https://doi.org/10.1016/J.MTCHEM.2018.05.002

    Article  CAS  Google Scholar 

  19. Ahmad SI, Ahmad R, Khan MS, Kant R, Shahid S, Gautam L, Hasan GM, Hassan MI (2020) Chitin and its derivatives: Structural properties and biomedical applications. Int J Biol Macromol 164:526–539. https://doi.org/10.1016/j.ijbiomac.2020.07.098

    Article  CAS  PubMed  Google Scholar 

  20. El Knidri H, Belaabed R, Addaou A, Laajeb A, Lahsini A (2018) Extraction, chemical modification and characterization of chitin and chitosan. Int J Biol macromol 120:1181–1189. https://doi.org/10.1016/j.ijbiomac.2018.08.139

    Article  CAS  PubMed  Google Scholar 

  21. Almasi H, Jafarzadeh P, Mehryar L (2018) Fabrication of novel nanohybrids by impregnation of CuO nanoparticles into bacterial cellulose and chitosan nanofibers: Characterization, antimicrobial and release properties. Carbohydr Polym 186:273–281. https://doi.org/10.1016/j.carbpol.2018.01.067

    Article  CAS  Google Scholar 

  22. Darwish M, Mohammadi A, Assi N (2016) Microwave-assisted polyol synthesis and characterization of pvp-capped cds nanoparticles for the photocatalytic degradation of tartrazine. Mater Res Bull 74:387–396

    Article  CAS  Google Scholar 

  23. Ghotekar S (2019) A review on plant extract mediated biogenic synthesis of CdO nanoparticles and their recent applications. Asian J Green Chem. 3(2):187–200. https://doi.org/10.22034/ajgc.2018.140313.1084

    Article  CAS  Google Scholar 

  24. Mata R, Nakkala JR, Sadras SR (2015) Catalytic and biological activities of green silver nanoparticles synthesized from Plumeria alba (frangipani) flower extract. Mater Sci Eng C 51:216–225. https://doi.org/10.1016/j.msec.2015.02.053

    Article  CAS  Google Scholar 

  25. Hajra A, Dutta S, Mondal NK (2016) Mosquito larvicidal activity of cadmium nanoparticles synthesized from petal extracts of marigold (Tagetes sp) and rose (Rosa sp) flower. J Parasit Dis 40(4):1519–1527. https://doi.org/10.1007/s12639-015-0719-4

    Article  PubMed  Google Scholar 

  26. Veerakumar K, Govindarajan M, Rajeswary M, Muthukumaran U (2014) Mosquito larvicidal properties of silver nanoparticles synthesized using Heliotropium indicum (Boraginaceae) against Aedes aegypti, Anopheles stephensi, and Culex quinquefasciatus (Diptera: Culicidae). Parasitol Res 113(6):2363–2373. https://doi.org/10.1007/s00436-014-3895-8

    Article  Google Scholar 

  27. Vasantha-Srinivasan P, Senthil-Nathan S, Thanigaivel A, Edwin ES, Ponsankar A, Selin-Rani S, Pradeepa V, Sakthi-Bhagavathy M, Kalaivani K, Hunter WB, Duraipandiyan V (2016) Developmental response of Spodoptera litura Fab. to treatments of crude volatile oil from Piper betle L. and evaluation of toxicity to earthworm. Eudrilus eugeniae Kinb Chemosphere 155:336–347. https://doi.org/10.1016/j.chemosphere.2016.03.139

    Article  CAS  PubMed  Google Scholar 

  28. Abbott WS (1925) A method of computing the effectiveness of an insecticide. J econ Entomol 18(2):265–267

    Article  CAS  Google Scholar 

  29. Arasu MV, Al-Dhabi NA, Saritha V, Duraipandiyan V, Muthukumar C, Kim SJ (2013) Antifeedant, larvicidal and growth inhibitory bioactivities of novel polyketide metabolite isolated from Streptomyces sp AP-123 against Helicoverpa Armigera and Spodoptera litura. BMC microbial. 13(1):1–6. https://doi.org/10.1186/1471-2180-13-105

    Article  CAS  Google Scholar 

  30. Isman MB, Koul O, Luczynski A, Kaminski J (1990) Insecticidal and antifeedant bioactivities of neem oils and their relationship to azadirachtin content. J Agric Food Chem 38(6):1406–1411. https://doi.org/10.1021/jf00096a024

    Article  CAS  Google Scholar 

  31. Murugan K, Kumar PM, Kovendan K, Amerasan D, Subrmaniam J, Hwang JS (2012) Larvicidal, pupicidal, repellent and adulticidal activity of Citrus sinensis orange peel extract against Anopheles stephensi, Aedes aegypti and Culex quinquefasciatus (Diptera: Culicidae). Parasitol Res 111(4):1757–1769. https://doi.org/10.1007/s00436-012-3021-8

    Article  PubMed  Google Scholar 

  32. Amerasan D, Murugan K, Panneerselvam C, Kanagaraju N, Kovendan K, Kumar PM (2015) Bioefficacy of morinda tinctoria and pongamia glabra plant extracts against the malaria vector anopheles stephensi (Diptera: Culicidae). J Entomol Acarol Res. 47(1):31–40. https://doi.org/10.4081/jear.2015.1986

    Article  Google Scholar 

  33. World Health Organization. 1981 Instructions for determining the susceptibility or resistance of mosquito larvae to insecticides. World Health Organization

  34. Govindarajan M, Mathivanan T, Elumalai K, Krishnappa K, Anandan A (2011) Mosquito larvicidal, ovicidal, and repellent properties of botanical extracts against Anopheles stephensi, Aedes aegypti, and Culex quinquefasciatus (Diptera: Culicidae). Parasitol Res 109(2):353–367. https://doi.org/10.1007/s00436-011-2263-1

    Article  CAS  PubMed  Google Scholar 

  35. Parthipan P, Cheng L, Rajasekar A, Govarthanan M, Subramania A (2021) Biologically reduced graphene oxide as a green and easily available photocatalyst for degradation of organic dyes. Environ Res 196:110983. https://doi.org/10.1016/j.envres.2021.110983

    Article  CAS  PubMed  Google Scholar 

  36. Muthuvel A, Jothibas M, Mohana V, Manoharan C (2020) Green synthesis of cerium oxide nanoparticles using Calotropis procera flower extract and their photocatalytic degradation and antibacterial activity. Inorg Chem Commun 119:108086. https://doi.org/10.1016/j.inoche.2020.108086

    Article  CAS  Google Scholar 

  37. MubarakAli D, Gopinath V, Rameshbabu N, Thajuddin N (2012) Synthesis and characterization of CdS nanoparticles using C-phycoerythrin from the marine cyanobacteria. Mater Lett 74:8–11. https://doi.org/10.1016/j.matlet.2012.01.026

    Article  CAS  Google Scholar 

  38. Gogoi N, Babu PJ, Mahanta C, Bora U (2015) Green synthesis and characterization of silver nanoparticles using alcoholic flower extract of Nyctanthes arbortristis and in vitro investigation of their antibacterial and cytotoxic activities. Mater Sci Eng C 46:463–469. https://doi.org/10.1016/j.msec.2014.10.069

    Article  CAS  Google Scholar 

  39. Azizi M, Ghourchian H, Yazdian F, Alizadehzeinabad H (2018) Albumin coated cadmium nanoparticles as chemotherapeutic agent against MDA-MB 231 human breast cancer cell line. Artif Cells Nanomed Biotechno 46(sup1):787–797. https://doi.org/10.1080/21691401.2018.1436064

    Article  CAS  Google Scholar 

  40. Cardoso P, Nunes T, Pinto R, Sá C, Matos D, Figueira E (2020) Rhizobium response to sole and combined exposure to cadmium and the phytocompounds alpha-pinene and quercetin. Ecotoxicology 29(4):444–458. https://doi.org/10.1007/s10646-020-02184-6

    Article  CAS  PubMed  Google Scholar 

  41. Harish R, Nisha KD, Prabakaran S, Sridevi B, Harish S, Navaneethan M, Ponnusamy S, Hayakawa Y, Vinniee C, Ganesh MR (2020) Cytotoxicity assessment of chitosan coated CdS nanoparticles for bio-imaging applications. Appl Surf Sci 499:143817

    Article  CAS  Google Scholar 

  42. Kaviyarasu K, Kanimozhi K, Matinise N, Magdalane CM, Mola GT, Kennedy J, Maaza M (2017) Antiproliferative effects on human lung cell lines A549 activity of cadmium selenide nanoparticles extracted from cytotoxic effects: investigation of bio-electronic application. Mater Sci Eng C 76:1012–1025. https://doi.org/10.1016/j.msec.2017.03.210

    Article  CAS  Google Scholar 

  43. Asghar M, Habib S, Zaman W, Hussain S, Ali H, Saqib S (2020) Synthesis and characterization of microbial mediated cadmium oxide nanoparticles. Microsc Res Tech 83(12):1574–1584. https://doi.org/10.1002/jemt.23553

    Article  CAS  PubMed  Google Scholar 

  44. Ghormade V, Gholap H, Kale S, Kulkarni V, Bhat S, Paknikar K (2015) Fluorescent cadmium telluride quantum dots embedded chitosan nanoparticles: a stable, biocompatible preparation for bio-imaging. J Biomate Sci Polym Ed 26(1):42–56. https://doi.org/10.1080/09205063.2014.982240

    Article  CAS  Google Scholar 

  45. Pavithra Bharathi V, Ragavendran C, Murugan N, Natarajan D (2017) Ipomoea batatas (Convolvulaceae)-mediated synthesis of silver nanoparticles for controlling mosquito vectors of Aedes albopictus, Anopheles stephensi, and Culex quinquefasciatus (Diptera: Culicidae). Artif Cells Nanomed Biotechnol 45(8):1568–1580. https://doi.org/10.1080/21691401.2016.1261873

    Article  CAS  PubMed  Google Scholar 

  46. Ahmed T, Hyder MZ, Liaqat I, Scholz M (2019) Climatic conditions: Conventional and nanotechnology-based methods for the control of mosquito vectors causing human health issues. Int J Environ Res Public Health 16(17):3165. https://doi.org/10.3390/ijerph16173165

    Article  PubMed  PubMed Central  Google Scholar 

  47. Chinnaperumal K, Govindasamy B, Paramasivam D, Dilipkumar A, Dhayalan A, Vadivel A, Sengodan K, Pachiappan P (2018) Bio-pesticidal effects of Trichoderma viride formulated titanium dioxide nanoparticle and their physiological and biochemical changes on Helicoverpa armigera (Hub.). Pestic biochem phys 149:26–36. https://doi.org/10.1016/j.pestbp.2018.05.005

    Article  CAS  Google Scholar 

  48. Ghoneim K, Hamadah K (2017) Antifeedant activity and detrimental effect of Nimbecidine (0.03% Azadirachtin) on the nutritional performance of Egyptian cotton leafworm Spodoptera littoralis Boisd (Noctuidae: Lepidoptera). Biol Bull 3(1):39–55

    Google Scholar 

  49. Sujitha V, Murugan K, Dinesh D, Pandiyan A, Aruliah R, Hwang JS, Kalimuthu K, Panneerselvam C, Higuchi A, Kumar S, Alarfaj AA (2017) Green-synthesized CdS nano-pesticides: toxicity on young instars of malaria vectors and impact on enzymatic activities of the non-target mud crab Scylla serrata. Aquat Toxicol 188:100–108. https://doi.org/10.1016/j.aquatox.2017.04.015

    Article  CAS  PubMed  Google Scholar 

  50. Suriyakala G, Sathiyaraj S, Gandhi AD, Vadakkan K, Rao UM, Babujanarthanam R (2021) Plumeria pudica Jacq flower extract-mediated silver nanoparticles: characterization and evaluation of biomedical applications. Inorg Chem Commun 126:108470. https://doi.org/10.1016/J.INOCHE.2021.108470

    Article  CAS  Google Scholar 

  51. Panneerselvam C, Murugan K, Roni M, Suresh U, Rajaganesh R, Madhiyazhagan P, Subramaniam J, Dinesh D, Nicoletti M, Higuchi A, Alarfaj AA (2016) Fern-synthesized nanoparticles in the fight against malaria: LC/MS analysis of Pteridium aquilinum leaf extract and biosynthesis of silver nanoparticles with high mosquitocidal and antiplasmodial activity. Parasitol Res 115(3):997–1013. https://doi.org/10.1007/s00436-015-4828-x

    Article  PubMed  Google Scholar 

  52. Murugan K, Roni M, Panneerselvam C, Suresh U, Rajaganesh R, Aruliah R, Mahyoub JA, Trivedi S, Rehman H, Al-Aoh HA, Kumar S (2018) Sargassum wightii-synthesized ZnO nanoparticles reduce the fitness and reproduction of the malaria vector Anopheles stephensi and cotton bollworm Helicoverpa armigera. Physiol Mol Plant Pathol 101:202–213. https://doi.org/10.1016/j.pmpp.2017.02.004

    Article  CAS  Google Scholar 

  53. Gandhi AD, Murugan K, Umamahesh K, Babujanarthanam R, Kavitha P, Selvi A (2019) Lichen Parmelia sulcata mediated synthesis of gold nanoparticles: an eco-friendly tool against Anopheles stephensi and Aedes aegypti. Environ Sci Pollut Res 26(23):23886–23898. https://doi.org/10.1007/s11356-019-05726-6

    Article  CAS  Google Scholar 

  54. Veerakumar K, Govindarajan M, Rajeswary M, Muthukumaran U (2014) Low-cost and eco-friendly green synthesis of silver nanoparticles using Feronia elephantum (Rutaceae) against Culex quinquefasciatus, Anopheles stephensi, and Aedes aegypti (Diptera: Culicidae). Parasitol Res 113(5):1775–1785. https://doi.org/10.1007/s00436-014-3823-y

    Article  PubMed  Google Scholar 

  55. Ramkumar G, Karthi S, Muthusamy R, Natarajan D, Shivakumar MS (2015) Adulticidal and smoke toxicity of Cipadessa baccifera (Roth) plant extracts against Anopheles stephensi, Aedes aegypti, and Culex quinquefasciatus. Parasitol Res 114(1):167–173. https://doi.org/10.1007/s00436-014-4173-5

    Article  PubMed  Google Scholar 

  56. Al-Dhabi NA, Valan Arasu M (2018) Environmentally-friendly green approach for the production of zinc oxide nanoparticles and their anti-fungal, ovicidal, and larvicidal properties. Nanomater 8(7):500. https://doi.org/10.3390/nano8070500

    Article  CAS  Google Scholar 

  57. Jyothi MS, Angadi VJ, Kanakalakshmi TV, Padaki M, Geetha BR, Soontarapa K (2019) Magnetic nanoparticles impregnated, cross-linked, porous chitosan microspheres for efficient adsorption of methylene blue from pharmaceutical waste water. J Polym Environ 11:2408–2418. https://doi.org/10.1007/s10924-019-01531-x

    Article  CAS  Google Scholar 

  58. Mavaei M, Chahardoli A, Shokoohinia Y, Khoshroo A, Fattahi A (2020) One-step synthesized silver nanoparticles using isoimperatorin: evaluation of photocatalytic, and electrochemical activities. Sci Rep 10(1):1–2. https://doi.org/10.1038/s41598-020-58697-x

    Article  CAS  Google Scholar 

Download references

Acknowledgements

ADG and KS thank sincerely for the support of research project by the Second Century Fund (C2F), Chulalongkorn University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Arumugam Dhanesh Gandhi.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Suriyakala, G., Sathiyaraj, S., Balasundaram, M. et al. Plumeria alba flower extract-mediated synthesis of recyclable chitosan-coated cadmium nanoparticles for pest control and dye degradation. Bioprocess Biosyst Eng 46, 1483–1498 (2023). https://doi.org/10.1007/s00449-023-02915-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00449-023-02915-z

Keywords

Navigation