Skip to main content
Log in

Engineering Escherichia coli for efficient and economic production of C-glycosylflavonoids by deleting YhhW and regulating pH

  • Research Paper
  • Published:
Bioprocess and Biosystems Engineering Aims and scope Submit manuscript

Abstract

C-glycosylflavonoids have a number of pharmacological activities. An efficient method for the preparation of C-glycosylflavonoids is through metabolic engineering. Thus, it is important to prevent the degradation of C-glycosylflavonoids for producing C-glycosylflavonoids in the recombinant strain. In this study, two critical factors for the degradation of C-glycosylflavonoids were clarified. The quercetinase (YhhW) gene from Escherichia coli BL21(DE3) was expressed, purified, and characterized. YhhW effectively degraded quercetin 8-C-glucoside, orientin, and isoorientin, while the degradation of vitexin and isovitexin was not significant. Zn2+ can significantly reduce the degradation of C-glycosylflavonoids by inhibiting the activity of YhhW. pH was another key factor causing the degradation of C-glycosylflavonoids, and C-glycosylflavonoids were significantly degraded with pH exceeding 7.5 in vitro or in vivo. On this basis, two strategies, deleting YhhW gene from the genome of E. coli and regulating pH during the bioconversion, were developed to relieve the degradation of C-glycosylflavonoids. Finally, the total degradation rates for orientin and quercetin 8-C-glucoside decreased from 100 to 28% and 65% to 18%, respectively. The maximum yield of orientin reached 3353 mg/L with luteolin as substrate, and the maximum yield of quercetin 8-C-glucoside reached 2236 mg/L with quercetin as substrate. Therefore, the method described herein for relieving the degradation of C-glycosylflavonoids may be widely used for the biosynthesis of C-glycosylflavonoids in recombinant strains.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data availability

All relevant data are within the manuscript.

References

  1. Chen L, Cao H, Huang Q, Xiao JB, Teng H (2022) Absorption, metabolism and bioavailability of flavonoids: a review. Crit Rev Food Sci Nutr 62:7730–7742

    Article  CAS  PubMed  Google Scholar 

  2. Burda S, Oleszek W (2001) Antioxidant and antiradical activities of flavonoids. J Agric Food Chem 49:2774–2779

    Article  CAS  PubMed  Google Scholar 

  3. Hwang SL, Shih PH, Yen GC (2012) Neuroprotective effects of citrus flavonoids. J Agric Food Chem 60:877–885

    Article  CAS  PubMed  Google Scholar 

  4. Kumar V, Jahan F, Mahajan RV, Saxena RK (2016) Efficient regioselective acylation of quercetin using Rhizopus oryzae lipase and its potential as antioxidant. Bioresour Technol 218:1246–1248

    Article  CAS  PubMed  Google Scholar 

  5. Li HB, Lyv YB, Zhou SH, Yu SQ, Zhou JW (2022) Microbial cell factories for the production of flavonoids-barriers and opportunities. Bioresour Technol 360:127538

    Article  CAS  PubMed  Google Scholar 

  6. Ren WY, Qiao ZH, Wang HW, Zhu L, Zhang L (2003) Flavonoids: promising anticancer agents. Med Res Rev 23:519–534

    Article  CAS  PubMed  Google Scholar 

  7. Yao LH, Jiang YM, Shi J, Tomas-Barberan FA, Datta N, Singanusong R, Chen SS (2004) Flavonoids in food and their health benefits. Plant Foods Hum Nutr 59:113–122

    Article  CAS  PubMed  Google Scholar 

  8. Rayyan S, Fossen T, Andersen OM (2005) Flavone C-glycosides from leaves of oxalis triangularis. J Agric Food Chem 53:10057–10060

    Article  CAS  PubMed  Google Scholar 

  9. Xiao JB, Capanoglu E, Jassbi AR, Miron A (2016) Advance on the flavonoid C-glycosides and health benefits. Crit Rev Food Sci Nutr 56:S29–S45

    Article  CAS  PubMed  Google Scholar 

  10. Rauter AP, Lopes RG, Martins A (2007) C-glycosylflavonoids: Identification, bioactivity and synthesis. Nat Prod Commun 2:1175–1196

    CAS  Google Scholar 

  11. Talhi O, Silva AMS (2012) Advances in C-glycosylflavonoid research. Curr Org Chem 16:859–896

    Article  CAS  Google Scholar 

  12. Choi JS, Islam MN, Ali MY, Kim EJ, Kim YM, Jung HA (2014) Effects of C-glycosylation on anti-diabetic, anti-Alzheimer’s disease and anti-inflammatory potential of apigenin. Food Chem Toxicol 64:27–33

    Article  CAS  PubMed  Google Scholar 

  13. Courts FL, Williamson G (2015) The occurrence, fate and biological activities of C-glycosyl flavonoids in the human diet. Crit Rev Food Sci Nutr 55:1352–1367

    Article  CAS  PubMed  Google Scholar 

  14. Kim SM, Kang K, Jho EH, Jung YJ, Nho CW, Um BH, Pan CH (2011) Hepatoprotective effect of flavonoid glycosides from Lespedeza cuneata against oxidative stress induced by tert-butyl hyperoxide. Phytother Re 25:1011–1017

    Article  CAS  Google Scholar 

  15. Peng X, Zheng Z, Cheng KW, Shan F, Ren GX, Chen F, Wang M (2008) Inhibitory effect of mung bean extract and its constituents vitexin and isovitexin on the formation of advanced glycation endproducts. Food Chem 106:475–481

    Article  CAS  Google Scholar 

  16. Hu C, Zhang Y, Kitts DD (2000) Evaluation of antioxidant and prooxidant activities of bamboo Phyllostachys nigra var. Henonis leaf extract in vitro. J Agric Food Chem 48:3170–3176

    Article  CAS  PubMed  Google Scholar 

  17. Byrne PF, Darrah LL, Snook ME, Wiseman BR, Barry BD (1996) Maize silk-browning, maysin content, and antibiosis to the corn earworm, Helicoverpa zea (Boddie). Maydica 41:13–18

    Google Scholar 

  18. Cheynier V, Comte G, Davies KM, Lattanzio V, Martens S (2013) Plant phenolics: recent advances on their biosynthesis, genetics, and ecophysiology. Plant Physiol Biochem 72:1–20

    Article  CAS  PubMed  Google Scholar 

  19. Zhang Y, Jiao JJ, Liu CM, Wu XQ, Zhang Y (2008) Isolation and purification of four flavone C-glycosides from antioxidant of bamboo leaves by macroporous resin column chromatography and preparative high-performance liquid chromatography. Food Chem 107(3):1326–1336

    CAS  Google Scholar 

  20. Oyama K, Yoshida K, Kondo T (2011) Recent progress in the synthesis of flavonoids: from monomers to supra-complex molecules. Curr Org Chem 15:2567–2607

    Article  CAS  Google Scholar 

  21. Wang Y, Chen S, Yu O (2011) Metabolic engineering of flavonoids in plants and microorganisms. Appl Microbiol Biotechnol 91:949–956

    Article  CAS  PubMed  Google Scholar 

  22. Mrudulakumari Vasudevan U, Lee EY (2020) Flavonoids, terpenoids, and polyketide antibiotics: role of glycosylation and biocatalytic tactics in engineering glycosylation. Biotechnol Adv 41:107550

    Article  CAS  PubMed  Google Scholar 

  23. Xie K, Zhang X, Sui S, Ye F, Dai J (2020) Exploring and applying the substrate promiscuity of a C-glycosyltransferase in the chemo-enzymatic synthesis of bioactive C-glycosides. Nat Commu 11:5162

    Article  CAS  Google Scholar 

  24. Cao H, Chen XQ, Jassbi AR, Xiao JB (2015) Microbial biotransformation of bioactive flavonoids. Biotechnol Adv 33:214–223

    Article  CAS  PubMed  Google Scholar 

  25. Shrestha A, Pandey RP, Dhakal D, Parajuli P, Sohng JK (2018) Biosynthesis of flavone C-glucosides in engineered Escherichia coli. Appl Microbiol Biotechnol 102:1251–1267

    Article  CAS  PubMed  Google Scholar 

  26. Pei JJ, Sun Q, Zhao LG, Shi H, Tang F, Cao F (2019) Efficient Biotransformation of luteolin to isoorientin through adjusting induction strategy, controlling acetic acid, and increasing UDP-glucose supply in Escherichia coli. J Agric Food Chem 67:331–340

    Article  CAS  PubMed  Google Scholar 

  27. He JB, Zhao P, Hu ZM, Liu S, Kuang Y, Zhang M, Li B, Yun CH, Qiao X, Ye M (2019) Molecular and structural characterization of a promiscuous C-glycosyltransferase from Trollius chinensis. Angew Chem Int Ed Engl 58:11513–11520

    Article  CAS  PubMed  Google Scholar 

  28. Wu YB, Wang H, Liu Y, Zhao LG, Pei JJ (2022) An efficient preparation and biocatalytic synthesis of novel C-glycosylflavonols kaempferol 8-C-glucoside and quercetin 8-C-glucoside through using resting cells and macroporous resins. Biotechnol Biofuels Bioprod 15(1):1–6

    Article  Google Scholar 

  29. Braune A, Blaut M (2012) Intestinal bacterium Eubacterium cellulosolvens deglycosylates flavonoid C- and O-glucosides. Appl Environ Microbiol 78:8151–8153

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Kim M, Lee J, Han J (2015) Deglycosylation of isoflavone C-glycosides by newly isolated human intestinal bacteria. J Sci Food Agric 95:1925–1931

    Article  CAS  PubMed  Google Scholar 

  31. Mori T, Kumano T, He HB, Watanabe S, Senda M, Moriya T, Adachi N, Hori S, Terashita Y, Kawasaki M (2021) C-Glycoside metabolism in the gut and in nature: Identification, characterization, structural analyses and distribution of C-C bond-cleaving enzymes. Nat Commun 12(1):6294

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Braune A, Gutschow M, Blaut M (2019) An NADH-dependent reductase from eubacterium ramulus catalyzes the stereospecific heteroring cleavage of flavanones and flavanonols. Appl Environ Microbiol 85(19):e01233

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Braune A, Engst W, Blaut M (2016) Identification and functional expression of genes encoding flavonoid O- and C-glycosidases in intestinal bacteria. Environ Microbiol 18:2117–2129

    Article  CAS  PubMed  Google Scholar 

  34. Pillai BVS, Swarup S (2002) Elucidation of the flavonoid catabolism pathway in Pseudomonas putida PML2 by comparative metabolic profiling. Appl Environ Microbiol 68:143–151

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Rao JR, Cooper JE (1994) Rhizobia catabolize nod gene-inducing flavonoids via C-ring fission mechanisms. J Bacteriol 176:5409–5413

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Marin AM, Souza EM, Pedrosa FO, Souza LM, Sassaki GL, Baura VA, Yates MG, Wassem R, Monteiro RA (2013) Naringenin degradation by the endophytic diazotroph Herbaspirillum seropedicae SmR1. Microbiology-Sgm 159:167–175

    Article  CAS  Google Scholar 

  37. Adams M, Jia ZC (2005) Structural and biochemical analysis reveal pirins to possess quercetinase activity. J Biol Chem 280:28675–28682

    Article  CAS  PubMed  Google Scholar 

  38. Zangoui P, Vashishtha K, Mahadevan S (2015) Evolution of aromatic beta-glucoside utilization by successive mutational steps in Escherichia coli. J Bacteriol 197(4):710–716

    Article  PubMed  PubMed Central  Google Scholar 

  39. Jiang Y, Chen B, Duan CL, Sun BB, Yang JJ, Yang S (2015) Multigene editing in the Escherichia coli genome via the CRISPR-Cas9 system. Appl Environ Microbiol 81:2506–2514

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Li Q, Sun BB, Chen J, Zhang YW, Jiang Y, Yang S (2021) A modified pCas/pTargetF system for CRISPR-Cas9-assisted genome editing in Escherichia coli. Acta Biochim Biophys Sin 53(5):620–627

    Article  CAS  PubMed  Google Scholar 

  41. Pacifico S, Scognamiglio M, D’Abrosca B, Piccolella S, Tsafantakis N, Gallicchio M, Ricci A, Fiorentino A (2010) Spectroscopic characterization and antiproliferative activity on HepG2 human hepatoblastoma cells of flavonoid C-glycosides from Petrorhagia velutina. J Nat Prod 73:1973–1978

    Article  CAS  PubMed  Google Scholar 

  42. Yan F, Yang Y, Yu L, Zheng X (2017) Effects of C-glycosides from apios americana leaves against oxidative stress during hyperglycemia through regulating mitogen-activated protein kinases and nuclear factor erythroid 2-related factor 2. J Agric Food Chem 65:7457–7466

    Article  CAS  PubMed  Google Scholar 

  43. Guo B, Zhang Y, Hicks G, Huang X, Li R, Roy N, Jia Z (2019) Structure-dependent modulation of substrate binding and biodegradation activity of pirin proteins toward plant flavonols. ACS Chem Biol 14:2629–2640

    Article  CAS  PubMed  Google Scholar 

  44. Antonczak S, Fiorucci S, Golebiowski J, Cabrol-Bass D (2009) Theoretical investigations of the role played by quercetinase enzymes upon the flavonoids oxygenolysis mechanism. Phys Chem Chem Phys 11(10):1491–1501

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Key R&D Program of China (2022YFD2200905) and the National Natural Science Foundation of China (21978135).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Linguo Zhao or Jianjun Pei.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOC 833 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, S., Liu, J., Zhao, L. et al. Engineering Escherichia coli for efficient and economic production of C-glycosylflavonoids by deleting YhhW and regulating pH. Bioprocess Biosyst Eng 46, 1251–1264 (2023). https://doi.org/10.1007/s00449-023-02893-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00449-023-02893-2

Keywords

Navigation