Skip to main content

Advertisement

Log in

Development of two devices for high-throughput screening of ethanol-producing microorganisms by real-time CO2 production monitoring

  • Research Paper
  • Published:
Bioprocess and Biosystems Engineering Aims and scope Submit manuscript

Abstract

Bioethanol’s importance as a renewable energy carrier led to the development of new devices for the high-throughput screening (HTS) of ethanol-producing microorganisms, monitoring ethanol production, and process optimization. This study developed two devices based on measuring CO2 evolution (an equimolar byproduct of microbial ethanol fermentation) to allow for a fast and robust HTS of ethanol-producing microorganisms for industrial purposes. First, a pH-based system for identifying ethanol producers (Ethanol-HTS) was established in a 96-well plate format where CO2 emission is captured by a 3D-printed silicone lid and transferred from the fermentation well to a reagent containing bromothymol blue as a pH indicator. Second, a self-made CO2 flow meter (CFM) was developed as a lab-scale tool for real-time quantification of ethanol production. This CFM contains four chambers to simultaneously apply different fermentation treatments while LCD and serial ports allow fast and easy data transfer. Applying ethanol-HTS with various yeast concentrations and yeast strains displayed different colors, from dark blue to dark and light green, based on the amount of carbonic acid formed. The results of the CFM device revealed a fermentation profile. The curve of CO2 production flow among six replications showed the same pattern in all batches. The comparison of final ethanol concentrations calculated based on CO2 flow by the CFM device with the GC analysis showed 3% difference which is not significant. Data validation of both devices demonstrated their applicability for screening novel bioethanol-producer strains, determining carbohydrate fermentation profiles, and monitoring ethanol production in real time.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data availability

The datasets used and/or analyzed during the current study are available from the corresponding author upon reasonable request.

Abbreviations

ETOH:

Ethanol

HTS:

High throughput screening

CFM device:

CO2 flow meter

OD:

Optical density

References

  1. Tesfaw A, Assefa F (2014) Current trends in bioethanol production by Saccharomyces cerevisiae: substrate, inhibitor reduction, growth variables, coculture, and immobilization. International scholarly research notices

  2. Brinkman M, Levin-Koopman J, Wicke B, Shutes L, Kuiper M, Faaij A et al (2020) The distribution of food security impacts of biofuels, a Ghana case study. Biomass Bioenerg 141:105695

    Article  Google Scholar 

  3. Stambuk BU, Batista AS, De Araujo PS (2000) Kinetics of active sucrose transport in Saccharomyces cerevisiae. J Biosci Bioeng 89(2):212–214

    Article  CAS  PubMed  Google Scholar 

  4. Schöck T, Becker T (2010) Sensor array for the combined analysis of water–sugar–ethanol mixtures in yeast fermentations by ultrasound. Food Control 21(4):362–369

    Article  Google Scholar 

  5. Lievense JC, Lim HC (1982) The growth and dynamics of Saccharomyces cerevisiae. Annual reports on fermentation processes. Elsevier, pp 211–262

    Google Scholar 

  6. Tikka C, Osuru HP, Atluri N, Raghavulu PCV (2013) Isolation and characterization of ethanol tolerant yeast strains. Bioinformation 9(8):421

    Article  PubMed  PubMed Central  Google Scholar 

  7. Koskinen PE, Lay C-H, Beck SR, Tolvanen KE, Kaksonen AH, Örlygsson J et al (2008) Bioprospecting thermophilic microorganisms from Icelandic hot springs for hydrogen and ethanol production. Energy Fuels 22(1):134–140

    Article  CAS  Google Scholar 

  8. Raman N, Pothiraj C (2008) Screening of Zymomonas mobilis and Saccharomyces cerevisiae strains for ethanol production from cassava waste. Rasayan J Chem 1:537–541

    CAS  Google Scholar 

  9. Laluce C, Tognolli JO, De Oliveira KF, Souza CS, Morais MR (2009) Optimization of temperature, sugar concentration, and inoculum size to maximize ethanol production without significant decrease in yeast cell viability. Appl Microbiol Biotechnol 83(4):627–637

    Article  CAS  PubMed  Google Scholar 

  10. Wang H, Ji B, Ren H, Meng C (2014) The relationship between lysine 4 on histone H 3 methylation levels of alcohol tolerance genes and changes of ethanol tolerance in S accharomyces cerevisiae. Microb Biotechnol 7(4):307–314

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Caspeta L, Coronel J, Montes de Oca A, Abarca E, González L, Martínez A (2019) Engineering high-gravity fermentations for ethanol production at elevated temperature with Saccharomyces cerevisiae. Biotechnol Bioeng 116(10):2587–2597

    Article  CAS  PubMed  Google Scholar 

  12. Xin Y, Yang M, Yin H, Yang J (2020) Improvement of ethanol tolerance by inactive protoplast fusion in Saccharomyces cerevisiae. BioMed Res Int. https://doi.org/10.1155/2020/1979318

    Article  PubMed  PubMed Central  Google Scholar 

  13. Karimi K, Tabatabaei M, Sárvári Horváth I, Kumar R (2015) Recent trends in acetone, butanol, and ethanol (ABE) production. Biofuel Res J 2(4):301–308

    Article  CAS  Google Scholar 

  14. Vees CA, Neuendorf CS, Pflügl S (2020) Towards continuous industrial bioprocessing with solventogenic and acetogenic clostridia: challenges, progress and perspectives. J Ind Microbiol Biotechnol: Off J Soc Ind Microbiol Biotechnol 47(9–10):753–787

    Article  CAS  Google Scholar 

  15. Cornell NW, Veech RL (1983) Enzymatic measurement of ethanol or NAD in acid extracts of biological samples. Anal Biochem 132(2):418–423

    Article  CAS  PubMed  Google Scholar 

  16. Archer M, De Vos B-J, Visser MS (2007) The preparation, assay and certification of aqueous ethanol reference solutions. Accred Qual Assur 12(3):188–193

    Article  CAS  Google Scholar 

  17. Seo H-B, Kim H-J, Lee O-K, Ha J-H, Lee H-Y, Jung K-H (2009) Measurement of ethanol concentration using solvent extraction and dichromate oxidation and its application to bioethanol production process. J Ind Microbiol Biotechnol 36(2):285–292

    Article  CAS  PubMed  Google Scholar 

  18. Miah R, Siddiqa A, Tuli JF, Barman NK, Dey SK, Adnan N et al (2017) Inexpensive procedure for measurement of ethanol: application to bioethanol production process. Adv Microbiol 7(11):743–748

    Article  CAS  Google Scholar 

  19. Hessami MJ, Cheng SF, Ambati RR, Yin YH, Phang SM (2019) Bioethanol production from agarophyte red seaweed, Gelidium elegans, using a novel sample preparation method for analysing bioethanol content by gas chromatography. 3 Biotech 9(1):1–8

    Article  Google Scholar 

  20. de Souza Schneider RdC, Junior CS, Fornasier F, de Souza D, Corbellini VA (2018) Bioethanol production from broken rice grains. Interciencia 43(12):846–851

    Google Scholar 

  21. Udugama IA, Gargalo CL, Yamashita Y, Taube MA, Palazoglu A, Young BR et al (2020) The role of big data in industrial (bio) chemical process operations. Ind Eng Chem Res 59(34):15283–15297

    Article  CAS  Google Scholar 

  22. Cabaneros Lopez P, Udugama IA, Thomsen ST, Roslander C, Junicke H, Iglesias MM et al (2021) Transforming data to information: a parallel hybrid model for real-time state estimation in lignocellulosic ethanol fermentation. Biotechnol Bioeng 118(2):579–591

    Article  CAS  PubMed  Google Scholar 

  23. Cañete-Carmona E, Gallego-Martínez J-J, Martín C, Brox M, Luna-Rodríguez J-J, Moreno J (2020) A Low-cost IoT device to monitor in real-time wine alcoholic fermentation evolution through CO 2 emissions. IEEE Sens J 20(12):6692–6700

    Article  Google Scholar 

  24. Henning B, Rautenberg J (2006) Process monitoring using ultrasonic sensor systems. Ultrasonics 44:e1395–e1399

    Article  PubMed  Google Scholar 

  25. Bowler A, Escrig J, Pound M, Watson N (2021) Predicting alcohol concentration during beer fermentation using ultrasonic measurements and machine learning. Fermentation 7(1):34

    Article  CAS  Google Scholar 

  26. Veale EL, Irudayaraj J, Demirci A (2007) An on-line approach to monitor ethanol fermentation using FTIR spectroscopy. Biotechnol Prog 23(2):494–500

    Article  CAS  PubMed  Google Scholar 

  27. Gyalai-Korpos M, Fehér A, Barta Z, Réczey K (2014) Evaluation of an online fermentation monitoring system. Acta Aliment 43(1):76–87

    Article  Google Scholar 

  28. Veiga M, Soto M, Méndez R, Lema J (1990) A new device for measurement and control of gas production by bench scale anaerobic digesters. Water Res 24(12):1551–1554

    Article  CAS  Google Scholar 

  29. Macias M, Pérez M, Caro I, Cantero D (1995) Automatic gas meter for laboratory fermenters. Biotechnol Tech 9:655–658

    Article  CAS  Google Scholar 

  30. Jahreis K, Bentler L, Bockmann Jr, Hans S, Meyer A, Siepelmeyer Jr, et al. (2002) Adaptation of sucrose metabolism in the Escherichia coli wild-type strain EC3132. Journal of bacteriology. 184(19): 5307-16

  31. Bergey DH (1994) Bergey’s manual of determinative bacteriology. Lippincott Williams & Wilkins

    Google Scholar 

  32. Tenny KM, Cooper JS (2017) Ideal Gas Behavior

  33. Benítez T, del Castillo L, Aguilera A, Conde J, Cerdáolmedo E (1983) Selection of wine yeasts for growth and fermentation in the presence of ethanol and sucrose. Appl Environ Microbiol 45(5):1429–1436

    Article  PubMed  PubMed Central  Google Scholar 

  34. Salmon J (1989) Effect of sugar transport inactivation in Saccharomyces cerevisiae on sluggish and stuck enological fermentations. Appl Environ Microbiol 55(4):953–958

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Brice C, Sanchez I, Tesnière C, Blondin B (2014) Assessing the mechanisms responsible for differences between nitrogen requirements of Saccharomyces cerevisiae wine yeasts in alcoholic fermentation. Appl Environ Microbiol 80(4):1330–1339

    Article  PubMed  PubMed Central  Google Scholar 

  36. Kerr RA (1998) The next oil crisis looms large–and perhaps close. Am Assoc Adv Sci. https://doi.org/10.1126/science.281.5380.1128

    Article  Google Scholar 

  37. Mielenz JR (2001) Ethanol production from biomass: technology and commercialization status. Curr Opin Microbiol 4(3):324–329

    Article  CAS  PubMed  Google Scholar 

  38. Benton TG, Froggatt A, Wellesley L, Schröder P (2022) The Ukraine war and threats to food and energy security

  39. Sharma N, Sharma N (2021) Screening and molecular identification of hypercellulase and xylanase-producing microorganisms for bioethanol production. Curr Sci 120(5):841

    Article  CAS  Google Scholar 

  40. Luo Z, Zeng W, Du G, Liu S, Fang F, Zhou J et al (2017) A high-throughput screening procedure for enhancing pyruvate production in Candida glabrata by random mutagenesis. Bioprocess Biosyst Eng 40(5):693–701

    Article  CAS  PubMed  Google Scholar 

  41. Zeng W, Guo L, Xu S, Chen J, Zhou J (2020) High-throughput screening technology in industrial biotechnology. Trends Biotechnol. https://doi.org/10.1016/j.tibtech.2020.01.001

    Article  PubMed  Google Scholar 

  42. Lin Y, Chen Y, Li Q, Tian X, Chu J (2019) Rational high-throughput screening system for high sophorolipids production in Candida bombicola by co-utilizing glycerol and glucose capacity. Bioresour Bioprocess 6(1):17

    Article  Google Scholar 

  43. Abalde-Cela S, Gould A, Liu X, Kazamia E, Smith AG, Abell C (2015) High-throughput detection of ethanol-producing cyanobacteria in a microdroplet platform. J R Soc Interface 12(106):20150216

    Article  PubMed  PubMed Central  Google Scholar 

  44. Zeng W, Du G, Chen J, Li J, Zhou J (2015) A high-throughput screening procedure for enhancing α-ketoglutaric acid production in Yarrowia lipolytica by random mutagenesis. Process Biochem 50(10):1516–1522

    Article  CAS  Google Scholar 

  45. Oter O, Ertekin K, Topkaya D, Alp S (2006) Room temperature ionic liquids as optical sensor matrix materials for gaseous and dissolved CO2. Sens Actuators, B Chem 117(1):295–301

    Article  CAS  Google Scholar 

  46. Iwasaka M, Kurita S, Owada N (2012) Properties of bubbled gases transportation in a bromothymol blue aqueous solution under gradient magnetic fields. J Appl Phys 111(7):07B326

    Article  Google Scholar 

  47. Umeh S, Agwuna L, Okafor U (2017) Yeasts from local sources: an alternative to the conventional brewer‟ s yeast. Int J Biotechnol Food Sci 30:191–195

    Google Scholar 

  48. Perfetto R, Del Prete S, Vullo D, Sansone G, Barone C, Rossi M et al (2017) Biochemical characterization of the native α-carbonic anhydrase purified from the mantle of the mediterranean mussel, mytilus galloprovincialis. J Enzyme Inhib Med Chem 32(1):632–639

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Wood JA, Orr VC, Luque L, Nagendra V, Berruti F, Rehmann L (2015) High-throughput screening of inhibitory compounds on growth and ethanol production of Saccharomyces cerevisiae. BioEnerg Res 8:423–430

    Article  CAS  Google Scholar 

  50. El-Dalatony MM, Salama E-S, Kurade MB, Kim K-Y, Govindwar SP, Kim JR et al (2019) Whole conversion of microalgal biomass into biofuels through successive high-throughput fermentation. Chem Eng J 360:797–805

    Article  CAS  Google Scholar 

  51. Schalk R, Braun F, Frank R, Rädle M, Gretz N, Methner F-J et al (2017) Non-contact Raman spectroscopy for in-line monitoring of glucose and ethanol during yeast fermentations. Bioprocess Biosyst Eng 40(10):1519–1527

    Article  CAS  PubMed  Google Scholar 

  52. Menevseoglu A, Aykas DP, Hatta-Sakoda B, Toledo-Herrera VH, Rodriguez-Saona LE (2021) Non-invasive monitoring of ethanol and methanol levels in grape-derived pisco distillate by vibrational spectroscopy. Sensors 21(18):6278

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Van Dijken JP, Van Den Bosch E, Hermans JJ, De Miranda LR, Scheffers WA (1986) Alcoholic fermentation by ‘non-fermentative’yeasts. Yeast 2(2):123–127

    Article  PubMed  Google Scholar 

  54. Komatsuzaki N, Okumura R, Sakurai M, Ueki Y, Shima J (2016) Characteristics of Saccharomyces cerevisiae isolated from fruits and humus: Their suitability for bread making

Download references

Acknowledgements

The authors are grateful for all support received from ACECR- Mashhad branch.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohammad Zare Mehrjerdi.

Ethics declarations

Conflict of interest

The authors declare that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gord Noshahri, N., Sharifi, A., Seyedabadi, M. et al. Development of two devices for high-throughput screening of ethanol-producing microorganisms by real-time CO2 production monitoring. Bioprocess Biosyst Eng 46, 1209–1220 (2023). https://doi.org/10.1007/s00449-023-02892-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00449-023-02892-3

Keywords

Navigation