Skip to main content
Log in

Immobilized lipase for sustainable hydrolysis of acidified oil to produce fatty acid

  • Research Paper
  • Published:
Bioprocess and Biosystems Engineering Aims and scope Submit manuscript

Abstract

Acidified oil is obtained from by-product of crops oil refining industry, which is considered as a low-cost material for fatty acid production. Hydrolysis of acidified oil by lipase catalysis for producing fatty acid is a sustainable and efficient bioprocess that is an alternative of continuous countercurrent hydrolysis. In this study, lipase from Candida rugosa (CRL) was immobilized on magnetic Fe3O4@SiO2 via covalent binding strategy for highly efficient hydrolysis of acidified soybean oil. FTIR, XRD, SEM and VSM were used to characterize the immobilized lipase (Fe3O4@SiO2-CRL). The enzyme properties of the Fe3O4@SiO2-CRL were determined. Fe3O4@SiO2-CRL was used to catalyze the hydrolysis of acidified soybean oil to produce fatty acids. Catalytic reaction conditions were studied, including amount of catalyst, reaction time, and water/oil ratio. The results of optimization indicated that the hydrolysis rate reached 98% under 10 wt.% (oil) of catalyst, 3:1 (v/v) of water/oil ratio, and 313 K after 12 h. After 5 cycles, the hydrolysis activity of Fe3O4@SiO2-CRL remained 55%. Preparation of fatty acids from high-acid-value by-products through biosystem shows great industrial potential.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data availability

All the authors confirm that the data supporting the findings of this study are available within this article.

Abbreviations

CRL:

Lipase from Candida rugosa lipase

FTIR:

Fourier transform infrared spectroscopy

XRD:

X-ray diffraction

SEM:

Scanning electron microscope

VSM:

Vibration sample magnetometer

TEOS:

Ethyl orthosilicate

p-NP:

P-nitrophenol

BSA:

Bovine serum albumin

APTES:

3-Aminopropyl triethoxysilane

p-NPP:

P-nitrobenzene palmitate

References

  1. de Morais WG, Terrasan CRF, Fernandez-Lorente G, Guisan JM, Ribeiro EJ, de Resende MM, Pessela B (2017) Solid-phase amination of Geotrichum candidum lipase: Ionic immobilization, stabilization and fish oil hydrolysis for the production of Omega-3 polyunsaturated fatty acids. Eur Food Res Technol 243:1375–1384. https://doi.org/10.1007/s00217-017-2848-8

    Article  CAS  Google Scholar 

  2. Qiao HZ, Zhang F, Guan WT, Zuo JJ, Feng DY (2017) Optimisation of combi-lipases from Aspergillus niger for the synergistic and efficient hydrolysis of soybean oil. Anim Sci J 88:772–780. https://doi.org/10.1111/asj.12718

    Article  CAS  PubMed  Google Scholar 

  3. Anand A, Weatherley LR (2018) The performance of microbial lipase immobilized onto polyolefin supports for hydrolysis of high oleate sunflower oil. Process Biochem 68:100–107. https://doi.org/10.1016/j.procbio.2018.01.027

    Article  CAS  Google Scholar 

  4. Yousefi M, Marciello M, Guisan JM, Fernandez-Lorente G, Mohammadi M, Filice M (2020) Fine modulation of the catalytic properties of Rhizomucor miehei lipase driven by different immobilization strategies for the selective hydrolysis of fish oil. Molecules 25:545. https://doi.org/10.3390/molecules25030545

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Mulinari J, Venturin B, Sbardelotto M, Agnol AD, Scapini T, Camargo AF, Baldissarelli DP, Modkovski TA, Rossetto V, Dalla Rosa C, Reichert FW, Golunski SM, Vieitez I, Vargas GDLP, Dalla Rosa C, Mossi AJ, Treichel H (2017) Ultrasound-assisted hydrolysis of waste cooking oil catalyzed by homemade lipases. Ultrason Sonochem 35:313–318. https://doi.org/10.1016/j.ultsonch.2016.10.007

    Article  CAS  PubMed  Google Scholar 

  6. Tavares F, Petry J, Sackser PR, Borba CE, Silva EA (2018) Use of castor bean seeds as lipase source for hydrolysis of crambe oil. Ind Crops Prod 124:254–264. https://doi.org/10.1016/j.indcrop.2018.06.073

    Article  CAS  Google Scholar 

  7. Wang P, Ke ZD, Yi JJ, Liu X, Hao LM, Kang QZ, Lu JK (2019) Effects of beta-cyclodextrin on the enzymatic hydrolysis of hemp seed oil by lipase Candida sp.99-125. Ind Crops Prod 129:688–693. https://doi.org/10.1016/j.indcrop.2018.11.046

    Article  CAS  Google Scholar 

  8. Esteban L, Jimenez MJ, Hita E, Gonzalez PA, Martin L, Robles A (2011) Production of structured triacylglycerols rich in palmitic acid at sn-2 position and oleic acid at sn-1,3 positions as human milk fat substitutes by enzymatic acidolysis. Biochem Eng J 54:62–69. https://doi.org/10.1016/j.bej.2011.01.009

    Article  CAS  Google Scholar 

  9. Aguilera-Oviedo J, Yara-Varon E, Torres M, Canela-Garayoa R, Balcells M (2021) Sustainable synthesis of omega-3 fatty acid ethyl esters from monkfish liver oil. Catalysts 11:100. https://doi.org/10.3390/catal11010100

    Article  CAS  Google Scholar 

  10. Zhang J, Nunez A, Strahan GD, Ashby R, Huang K, Moreau RA, Yan Z, Chen L, Ngo H (2020) An advanced process for producing structurally selective dimer acids to meet new industrial uses. Ind Crops Prod 146:112132. https://doi.org/10.1016/j.indcrop.2020.112132

    Article  CAS  Google Scholar 

  11. Jiang X, Long F, Zhai QL, Zhao JP, Liu P, Xu JM (2022) Catalytic cracking of acidified oil and modification of pyrolytic oils from soap stock for the production of a high-quality biofuel. New J Chem 46:1770–1778. https://doi.org/10.1039/D1NJ05543G

    Article  CAS  Google Scholar 

  12. Abd Nasir MA, Jahim JM, Abdul PM, Silvamany H, Maaroff RM, Yunus MFM (2019) The use of acidified palm oil mill effluent for thermophilic biomethane production by changing the hydraulic retention time in anaerobic sequencing batch reactor. Int J Hydrogen Energ 44:3373–3381. https://doi.org/10.1016/j.ijhydene.2018.06.149

    Article  CAS  Google Scholar 

  13. Hamzah MAF, Jahim JM, Abdul PM, Asis AJ (2019) Investigation of temperature effect on start-up operation from anaerobic digestion of acidified palm oil mill effluent. Energies 12:2473. https://doi.org/10.3390/en12132473

    Article  CAS  Google Scholar 

  14. Shi WY, He BQ, Li JX (2011) Esterification of acidified oil with methanol by SPES/PES catalytic membrane. Bioresour Technol 102:5389–5393. https://doi.org/10.1016/j.biortech.2010.09.074

    Article  CAS  PubMed  Google Scholar 

  15. Ma LL, Lv EM, Du LX, Lu J, Ding JC (2016) Statistical modeling/optimization and process intensification of microwave-assisted acidified oil esterification. Energ Convers Manage 122:411–418. https://doi.org/10.1016/j.enconman.2016.06.001

    Article  CAS  Google Scholar 

  16. Paula M, Oliveira L, Cunha FT, Gomes T, Langone M (2021) Evaluation of continuous ethyl ester synthesis from acid soybean oil using a dual immobilized enzyme system. Biomass Bioenergy 144:105898

    Article  Google Scholar 

  17. Barnebey HL, Brown AC (1948) Continuous fat splitting plants using the colgate-emery process. J Am Oil Chem Soc. https://doi.org/10.1007/BF02579733

    Article  Google Scholar 

  18. Debajyoti G, Jayanta K, Basu S, De, (2012) Lipase applications in oil hydrolysis with a case study on castor oil: a review. Crit Rev Biotechnol 33:81–96. https://doi.org/10.3109/07388551.2012.672319

    Article  CAS  Google Scholar 

  19. Li W, Bo Y, Wang Y, Wei D, Whiteley C, Wang X (2009) Molecular modeling of substrate selectivity of Candida antarctica lipase B and Candida rugosa lipase towards c9, t11- and t10, c12-conjugated linoleic acid. J Mol Catal B Enzym 57:299–303. https://doi.org/10.1016/j.molcatb.2008.10.009

    Article  CAS  Google Scholar 

  20. Barbe S, Lafaquière V, Guieysse D, Monsan P, André I (2010) Insights into lid movements of Burkholderia cepacia lipase inferred from molecular dynamics simulations. Protein Stru Func Bioinform 77:509–523. https://doi.org/10.1002/prot.22462

    Article  CAS  Google Scholar 

  21. Stauch B, Fisher SJ, Cianci M (2015) Open and closed states of Candida antarctica lipase B: protonation and the mechanism of interfacial activation. J Lipid Res 56:2348–2358. https://doi.org/10.1194/jlr.M063388

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Muth M, Rothkotter S, Paprosch S, Schmid RP, Schnitzlein K (2017) Competition of Thermomyces lanuginosus lipase with its hydrolysis products at the oil-water interface. Colloid Surface B 149:280–287. https://doi.org/10.1016/j.colsurfb.2016.10.019

    Article  CAS  Google Scholar 

  23. Rios NS, Pinheiro BB, Pinheiro MP, Bezerra RM, Sousa JC, dos Santos L, Gonçalves RB (2018) Biotechnological potential of lipases from Pseudomonas: sources, properties and applications. Process Biochem 75:99–120. https://doi.org/10.1016/j.procbio.2018.09.003

    Article  CAS  Google Scholar 

  24. Li W, Du W, Liu DH (2007) Rhizopus oryzae IFO 4697 whole cell catalyzed methanolysis of crude and acidified rapeseed oils for biodiesel production in tert-butanol system. Process Biochem 42:1481–1485. https://doi.org/10.1016/j.procbio.2007.05.015

    Article  CAS  Google Scholar 

  25. Bilal M, Zhao YP, Rasheed T, Iqbal HMN (2018) Magnetic nanoparticles as versatile carriers for enzymes immobilization: a review. Int J Biol Macromol 120:2530–2544. https://doi.org/10.1016/j.ijbiomac.2018.09.025

    Article  CAS  PubMed  Google Scholar 

  26. Pan JY, Ou ZM, Tang L, Shi HB (2019) Enhancement of catalytic activity of lipase-immobilized Fe3O4-chitosan microsphere for enantioselective acetylation of racemic 1-phenylethylamine. Korean J Chem Eng 36:729–739. https://doi.org/10.1007/s11814-019-0249-3

    Article  CAS  Google Scholar 

  27. Xue F, Chen Q, Li Y, Liu E, Li D (2019) Immobilized lysozyme onto 1,2,3,4-butanetetracarboxylic (BTCA)-modified magnetic cellulose microsphere for improving bio-catalytic stability and activities. Enzym Microb Tech 131:109425. https://doi.org/10.1016/j.enzmictec.2019.109425

    Article  CAS  Google Scholar 

  28. Cao XY, Xu H, Li FS, Ran YL, Ma XR, Cao Y, Xu QR, Qiao DR, Cao Y (2021) One-step direct transesterification of wet yeast for biodiesel production catalyzed by magnetic nanoparticle-immobilized lipase. Renew Energ 171:11–21. https://doi.org/10.1016/j.renene.2021.02.065

    Article  CAS  Google Scholar 

  29. Cui J, Cui L, Jia S, Su Z, Zhang S (2016) Hybrid cross-linked lipase aggregates with magnetic nanoparticles: a robust and recyclable biocatalysis for the epoxidation of oleic acid. J Agr Food Chem 64:7179–7187. https://doi.org/10.1021/acs.jafc.6b01939

    Article  CAS  Google Scholar 

  30. Li C, Zhao J, Zhang Z, Jiang Y, Bilal M, Jiang Y, Jia S, Cui J (2020) Self-assembly of activated lipase hybrid nanoflowers with superior activity and enhanced stability. Biochem Eng J 158:107582. https://doi.org/10.1016/j.bej.2020.107582

    Article  CAS  Google Scholar 

  31. Zhong L, Jiao XB, Hu HT, Shen XJ, Zhao J, Feng YX, Li CH, Du YJ, Cui JD, Jia SR (2021) Activated magnetic lipase-inorganic hybrid nanoflowers: a highly active and recyclable nanobiocatalyst for biodiesel production. Renew Energ 171:825–832. https://doi.org/10.1016/j.renene.2021.02.155

    Article  CAS  Google Scholar 

  32. Xie WL, Huang MY (2020) Fabrication of immobilized Candida rugosa lipase on magnetic Fe3O4-poly(glycidyl methacrylate-co-methacrylic acid) composite as an efficient and recyclable biocatalyst for enzymatic production of biodiesel. Renew Energ 158:474–486. https://doi.org/10.1016/j.renene.2020.05.172

    Article  CAS  Google Scholar 

  33. Cai ZX, Wei Y, Wu M, Guo YL, Xie YP, Tao R, Li RQ, Wang PG, Ma AQ, Zhang HB (2019) Lipase immobilized on layer-by-layer polysaccharide-coated Fe3O4@SiO2 microspheres as a reusable biocatalyst for the production of structured lipids. Acs Sustain Chem Eng 7:6685–6695. https://doi.org/10.1021/acssuschemeng.8b05786

    Article  CAS  Google Scholar 

  34. Nuraliyah A, Wijanarko A, Hermansyah H (2018) Immobilization of Candida rugosa lipase by adsorption-crosslinking onto corn husk. IOP Conf Ser Mater Sci Eng Fail Anal 345:012042. https://doi.org/10.1088/1757-899X/345/1/012042

    Article  Google Scholar 

  35. Nuraliyah A, Perdani MS, Putri DN, Sahlan M, Wijanarko A, Hermansyah H (2021) Effect of additional amino group to improve the performance of immobilized lipase from Aspergillus niger by adsorption-crosslinking method. Front Energy Res 9:616945. https://doi.org/10.3389/fenrg.2021.616945

    Article  Google Scholar 

  36. Wei TH, Wu SH, Huang YD, Lo WS, Williams BP, Chen SY, Yang HC, Hsu YS, Lin ZY, Chen XH (2019) Rapid mechanochemical encapsulation of biocatalysts into robust metal-organic frameworks. Nat Commun 10:5002

    Article  PubMed  PubMed Central  Google Scholar 

  37. Sara R, Shahram T, Patricia H, Majid M, Valiollah M (2018) Efficient biodiesel production using a lipase@ZIF-67 nanobioreactor. Chem Eng J 34:1233–1241

    Google Scholar 

  38. Ji Y, Wu ZZ, Zhang P, Qiao M, Hu Y, Shen BX, Li BZ, Zhang X (2021) Enzyme-functionalized magnetic framework composite fabricated by one-pot encapsulation of lipase and Fe3O4 nanoparticle into metal-organic framework. Biochem Eng J 169:107962. https://doi.org/10.1016/j.bej.2021.107962

    Article  CAS  Google Scholar 

  39. Luo Y, Jin D, He W, Huang J, Chen A, Q F, (2021) A SiO2 microcarrier with an opal-like structure for cross-linked enzyme immobilization. Langmuir 37:14147–14156. https://doi.org/10.1021/acs.langmuir.1c02389

    Article  CAS  PubMed  Google Scholar 

  40. Zhao F, Zhang H, Zhang Z, Liang YJM (2021) Preparation of mesoporous nanofilm constructed millimeter-sized macroporous SiO2 for lipase immobilization. Micropor Mesopor Mat 323:111227. https://doi.org/10.1016/j.micromeso.2021.111227

    Article  CAS  Google Scholar 

  41. Zhang Z, Du Y, Kuang G, Shen X, Jia X, Wang Z, Yuxiao Feng SJ, Liu F, Bilal M, Cui J (2022) Lipase-Ca2+ hybrid nanobiocatalysts through interfacial protein-inorganic self-assembly in deep-eutectic solvents (DES)/water two-phase system for biodiesel production. Renew Energ 197:110–124. https://doi.org/10.1016/j.renene.2022.07.092

    Article  CAS  Google Scholar 

  42. Cui J, Zhao Y, Liu R, Zhong C, Jia S (2016) Surfactant-activated lipase hybrid nanoflowers with enhanced enzymatic performance. Sci Rep-Uk 6:27928. https://doi.org/10.1038/srep27928

    Article  CAS  Google Scholar 

  43. Ozyilmaz E, Ascioglu S, Yilmaz M (2021) Calix[4]arene tetracarboxylic acid-treated lipase immobilized onto metal-organic framework: biocatalyst for ester hydrolysis and kinetic resolution. Int J Biol Macromol 175:79–86. https://doi.org/10.1016/j.ijbiomac.2021.02.003

    Article  CAS  PubMed  Google Scholar 

  44. Heidarizadeh M, Doustkhah E, Rostamnia S, Rezaei PF, Harzevili FD, Zeynizadeh B (2017) Dithiocarbamate to modify magnetic graphene oxide nanocomposite (Fe3O4-GO): a new strategy for covalent enzyme (lipase) immobilization to fabrication a new nanobiocatalyst for enzymatic hydrolysis of PNPD. Int J Biol Macromol 101:696–702. https://doi.org/10.1016/j.ijbiomac.2017.03.152

    Article  CAS  PubMed  Google Scholar 

  45. Ozyilmaz E, Etci K, Sezgin M (2018) Candida rugosa lipase encapsulated with magnetic sporopollenin: design and enantioselective hydrolysis of racemic arylpropanoic acid esters. Prep Biochem Biotech 48:887–897. https://doi.org/10.1080/10826068.2018.1514516

    Article  CAS  Google Scholar 

  46. Zhao K, Chen B, Li C, Li XF, Li KB, Shen YH (2018) Immobilization of Candida rugosa lipase on glutaraldehyde-activated Fe3O4@chitosan as a magnetically separable catalyst for hydrolysis of castor oil. Eur J Lipid Sci Tech 120:1700373. https://doi.org/10.1002/ejlt.201700373

    Article  CAS  Google Scholar 

  47. Wong WKL, Wahab RA, Onoja E (2020) Chemically modified nanoparticles from oil palm ash silica-coated magnetite as support for Candida rugosa lipase-catalysed hydrolysis: kinetic and thermodynamic studies. Chem Pap 74:1253–1265. https://doi.org/10.1007/s11696-019-00976-7

    Article  CAS  Google Scholar 

  48. Yu D, Zhang X, Wang T, Geng H, Elfalleh W (2021) Immobilized Candida antarctica lipase B (CALB) on functionalized MCM-41: stability and catalysis of transesterification of soybean oil and phytosterol. Food Biosci 40:100906. https://doi.org/10.1016/j.fbio.2021.100906

    Article  CAS  Google Scholar 

  49. Abd Wafti NS, Yunus R, Lau HLN, Yaw TCS, Aziz SA (2021) Immobilized lipase-catalyzed transesterification for synthesis of biolubricant from palm oil methyl ester and trimethylolpropane. Bioproc Biosyst Eng 44:2429–2444. https://doi.org/10.1007/s00449-021-02615-6

    Article  CAS  Google Scholar 

  50. Alikhani N, Shahedi M, Habibi Z, Yousefi M, Ghasemi S, Mohammadi M (2022) A multi-component approach for co-immobilization of lipases on silica-coated magnetic nanoparticles: improving biodiesel production from waste cooking oil. Bioproc Biosyst Eng 45:2043–2060. https://doi.org/10.1007/s00449-022-02808-7

    Article  CAS  Google Scholar 

  51. Yao BJ, Zhang XM, Li F, Li C, Dong YB (2020) Fe3O4/porphyrin covalent organic framework core-shell nanospheres as interfacial catalysts for enzymatic esterification. Acs Appl Nano Mater 3:10360–10368. https://doi.org/10.1021/acsanm.0c02276

    Article  CAS  Google Scholar 

  52. Yuan M, Cong FD, Zhai YL, Li P, Yang W, Zhang SL, Su YP, Li T, Wang YC, Luo W, Liu DY, Cui ZQ (2022) Rice straw enhancing catalysis of Pseudomonas fluorescens lipase for synthesis of citronellyl acetate. Bioproc Biosyst Eng 45:453–464. https://doi.org/10.1007/s00449-021-02659-8

    Article  CAS  Google Scholar 

  53. Wang XM, Zhao XX, Qin XL, Zhao ZX, Yang B, Wang YH (2021) Properties of immobilized MAS1-H108A lipase and its application in the efficient synthesis of n-3 PUFA-rich triacylglycerols. Bioproc Biosyst Eng 44:575–584. https://doi.org/10.1007/s00449-020-02470-x

    Article  CAS  Google Scholar 

  54. Muley AB, Awasthi S, Bhalerao PP, Jadhav NL, Singhal RS (2021) Preparation of cross-linked enzyme aggregates of lipase from Aspergillus niger: process optimization, characterization, stability, and application for epoxidation of lemongrass oil. Bioproc Biosyst Eng 44:1383–1404. https://doi.org/10.1007/s00449-021-02509-7

    Article  CAS  Google Scholar 

  55. Rodrigues RC, Berenguer-Murcia A, Carballares D, Morellon-Sterling R, Fernandez-Lafuente R (2021) Stabilization of enzymes via immobilization: multipoint covalent attachment and other stabilization strategies. Biotechnol Adv 52:107821. https://doi.org/10.1016/j.biotechadv.2021.107821

    Article  CAS  PubMed  Google Scholar 

  56. Silva TD, Keijok WJ, Guimaraes MCC, Cassini STA, de Oliveira JP (2022) Impact of immobilization strategies on the activity and recyclability of lipases in nanomagnetic supports. Sci Rep-Uk 12:6815. https://doi.org/10.1038/s41598-022-10721-y

    Article  CAS  Google Scholar 

  57. Alavarse AC, Frachini ECG, Silva RLCGd, Lima VH, Shavandi A, Petri DFS (2022) Crosslinkers for polysaccharides and proteins: synthesis conditions, mechanisms, and crosslinking efficiency, a review. Int J Biol Macromol 202:558–596. https://doi.org/10.1016/j.ijbiomac.2022.01.029

    Article  CAS  PubMed  Google Scholar 

  58. Xia JJ, Yan Y, Bin Z, Feng L (2022) Improved catalytic performance of carrier-free immobilized lipase by advanced cross-linked enzyme aggregates technology. Bioproc Biosyst Eng 45:147–158. https://doi.org/10.1007/s00449-021-02648-x

    Article  CAS  Google Scholar 

  59. Qian JQ, Huang AM, Zhu HX, Ding J, Zhang W, Chen Y (2023) Immobilization of lipase on silica nanoparticles by adsorption followed by glutaraldehyde cross-linking. Bioproc Biosyst Eng 46:25–38. https://doi.org/10.1007/s00449-022-02810-z

    Article  CAS  Google Scholar 

  60. Migneault I, Dartiguenave C, Bertrand MJ, Waldron KC (2004) Glutaraldehyde: behavior in aqueous solution, reaction with proteins, and application to enzyme crosslinking. Biotechniques 37:790–802. https://doi.org/10.2144/04375RV01

    Article  CAS  PubMed  Google Scholar 

  61. Cavalcante FTT, Cavalcante ALG, de Sousa IG, Neto FS, Santos JCSd (2021) Current status and future perspectives of support and protocols for enzyme immobilization. Catalysts 11:1222. https://doi.org/10.3390/catal11101222

    Article  CAS  Google Scholar 

  62. Thangaraj B, Jia ZH, Dai LM, Liu DH, Du W (2019) Effect of silica coating on Fe3O4 magnetic nanoparticles for lipase immobilization and their application for biodiesel production. Arab J Chem 12:4694–4706. https://doi.org/10.1016/j.arabjc.2016.09.004

    Article  CAS  Google Scholar 

  63. Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254. https://doi.org/10.1016/0003-2697(76)90527-3

    Article  CAS  PubMed  Google Scholar 

  64. Gupta N, Rathi P, Gupta R (2002) Simplified para-nitrophenyl palmitate assay for lipases and esterases. Anal Biochem 311:98–99. https://doi.org/10.1016/S0003-2697(02)00379-2

    Article  CAS  PubMed  Google Scholar 

  65. Tipton KF, Dixon H (1979) Effects of pH on enzymes. Methods Enzymol 63:183–234. https://doi.org/10.1016/0076-6879(79)63011-2

    Article  CAS  PubMed  Google Scholar 

  66. Iyer PV, Ananthanarayan L (2008) Enzyme stability and stabilization-aqueous and non-aqueous environment. Process Biochem 43:1019–1032. https://doi.org/10.1016/j.procbio.2008.06.004

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The financial support from the Natural Science Foundation of China (NSFC) (No. 21978112) and MOE & SAFEA for the 111 Project (B13025) are gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. The first draft of the manuscript was written by XF and all authors commented on previous versions of the manuscript. Conceptualization, methodology, investigation, formal analysis, and writing-original draft preparation were performed by XF. Conceptualization, funding acquisition, resources, supervision, and writing-review and editing were performed by PZ. Data curation and formal analysis were performed by YL and MF. Resources and supervision were performed by PJ. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Pingbo Zhang.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fan, X., Zhang, P., Fan, M. et al. Immobilized lipase for sustainable hydrolysis of acidified oil to produce fatty acid. Bioprocess Biosyst Eng 46, 1195–1208 (2023). https://doi.org/10.1007/s00449-023-02891-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00449-023-02891-4

Keywords

Navigation