Skip to main content
Log in

A combination fermentation strategy for simultaneously increasing cellular NADP(H) level, biomass, and enzymatic activity of glufosinate dehydrogenase in Escherichia coli

  • Research Paper
  • Published:
Bioprocess and Biosystems Engineering Aims and scope Submit manuscript

Abstract

Oxidoreductase is one of the most important biocatalysts for the synthesis of various chiral compounds. However, their whole-cell activity is frequently affected by an insufficient supply of expensive nicotinamide cofactors. This study aimed to overcome such shortcomings by developing a combination fermentation strategy for simultaneously increasing intracellular NADP(H) level, biomass, and glufosinate dehydrogenase activity in E. coli. The results showed that the feeding mode of NAD(H) synthesis precursor and lactose inducer had essential effects on the accumulation level of intracellular NADPH. Adding 40 mg L−1 of L-aspartic acid to the medium increased the intracellular NADP(H) concentration by 36.3%. Under the pH-stat feeding mode and adding 0.4 g L−1 h−1 lactose, the NADP(H) concentration, biomass, and GluDH activity in the 5-L fermenter reached 445.7 μmol L−1, 21.7 gDCW L−1, and 8569.3 U L−1, respectively. As far as we know, this is the highest reported activity of GluDH in the fermentation broth. Finally, the 5000-L fermenter was successfully scaled up to use this fermentation approach. The combination fermentation strategy might serve as a useful approach for the high-activity fermentation of other NADPH-dependent oxidoreductases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data availability

The datasets used or analyzed during the current study are available from the corresponding author on reasonable request.

References

  1. Vidal LS, Kelly CL, Mordaka PM, Heap JT (2018) Review of NAD(P)H-dependent oxidoreductases: properties, engineering and application. Biochimica Et Biophysica Acta-Prot Proteom 1866:327–347. https://doi.org/10.1016/j.bbapap.2017.11.005

    Article  CAS  Google Scholar 

  2. Fernandez-Lucas J (2021) New trends in industrial biocatalysis. Biotech Adv. 51:107782. https://doi.org/10.1016/j.biotechadv.2021.107782

    Article  Google Scholar 

  3. Li S, Ye Z, Moreb EA, Hennigan JN, Castellanos DB, Yang T, Lynch MD (2021) Dynamic control over feedback regulatory mechanisms improves NADPH flux and xylitol biosynthesis in engineered E. coli. Metab Eng 64:26–40. https://doi.org/10.1016/j.ymben.2021.01.005

    Article  CAS  PubMed  Google Scholar 

  4. Tesfay MA, Win X, Lin HB, Liu YJ, Li C, Lin JQ, Lin JQ (2021) Efficient L-xylulose production using whole-cell biocatalyst with NAD(+) regeneration system through co-expression of xylitol dehydrogenase and NADH oxidase in Escherichia coli. Biochem Eng J 175:108137. https://doi.org/10.1016/j.bej.2021.108137

    Article  CAS  Google Scholar 

  5. Xue YP, Cao CH, Zheng YG (2018) Enzymatic asymmetric synthesis of chiral amino acids. Chem Soc Rev 47:1516–1561. https://doi.org/10.1039/c7cs00253j

    Article  CAS  PubMed  Google Scholar 

  6. Cheng F, Wei L, Wang CJ, Xue YP, Zheng YG (2022) Formate dehydrogenase and its application in biomanufacturing of chiral chemicals. Chin J Biotechnol 38:632–649. https://doi.org/10.13345/j.cjb.210278

    Article  CAS  Google Scholar 

  7. Morrison CS, Armiger WB, Dodds DR, Dordicka JS, Koff MAG (2018) Improved strategies for electrochemical 1,4-NAD(P)H2 regeneration: A new era of bioreactors for industrial biocatalysis. Biotechnol Adv 36:120–131. https://doi.org/10.1016/j.biotechadv.2017.10.003

    Article  CAS  PubMed  Google Scholar 

  8. Liu J, Li H, Zhao G, Caiyin Q, Qiao J (2018) Redox cofactor engineering in industrial microorganisms: strategies, recent applications and future directions. J Ind Microbiol Biotechnol 45:313–327. https://doi.org/10.1007/s10295-018-2031-7

    Article  CAS  PubMed  Google Scholar 

  9. Yang LY, Mu XQ, Nie Y, Xu Y (2021) Improving the production of NAD(+) via multi-strategy metabolic engineering in Escherichia coli. Metab Eng 64:122–133. https://doi.org/10.1016/j.ymben.2021.01.012

  10. Yuan L, Qin YL, Zou ZC, Appiah B, Huang H, Yang ZH, Qun C (2022) Enhancing intracellular NADPH bioavailability through improving pentose phosphate pathway flux and its application in biocatalysis asymmetric reduction reaction. J Biosci Bioeng 134:528–533. https://doi.org/10.1016/j.jbiosc.2022.08.010

    Article  CAS  PubMed  Google Scholar 

  11. Berrios- Rivera SJ, San KY, Bennett GN (2002) The effect of NAPRTase overexpression on the total levels of NAD, the NADH/NAD(+) ratio, and the distribution of metabolites in Escherichia coli. Metab Eng 4:238–247. https://doi.org/10.1006/mben.2002.0229

    Article  CAS  PubMed  Google Scholar 

  12. Sun W, Shahrajabian MH, Lin M (2022) Research progress of fermented functional foods and protein factory-microbial fermentation technology. Fermentation-Basel 8:688. https://doi.org/10.3390/fermentation8120688

    Article  CAS  Google Scholar 

  13. Wang C, Xin FX, Kong XP, Zhao J, Dong WL, Zhang WM, Ma JF, Wu H, Jiang M (2018) Enhanced isopropanol-butanol-ethanol mixture production through manipulation of intracellular NAD(P)H level in the recombinant Clostridium acetobutylicum XY16. Biotechnol Biofuels 11:12. https://doi.org/10.1186/s13068-018-1024-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Ping Y, Liu YZ, Jian M, Qili Z, Qing CW (2022) Efficient regeneration of NADPH based on gluco kinase and glucose-6-phosphate dehydrogenase. J Chin Instit Food Sci Technol 22:163–172. https://doi.org/10.16429/j.1009-7848.2022.08.018

    Article  Google Scholar 

  15. Han Q, Eiteman MA (2018) Enhancement of NAD(H) pool for formation of oxidized biochemicals in Escherichia coli. J Ind Microbiol Biotechnol 45:939–950. https://doi.org/10.1007/s10295-018-2072-y

    Article  CAS  PubMed  Google Scholar 

  16. Oeggl R, Neumann T, Gatgens J, Romano D, Noack S, Rother D (2018) Citrate as cost-efficient NADPH regenerating agent. Front Bioeng Biotechnol 6:196. https://doi.org/10.3389/fbioe.2018.00196

    Article  PubMed  PubMed Central  Google Scholar 

  17. San KY, Bennett GN, Berrios-Rivera SJ, Vadali RV, Yang YT, Horton E, Rudolph FB, Sariyar B, Blackwood K (2002) Metabolic engineering through cofactor manipulation and its effects on metabolic flux redistribution in Escherichia coli. Metab Eng 4:182–192. https://doi.org/10.1006/mben.2001.0220

    Article  CAS  PubMed  Google Scholar 

  18. Zou C, Duan XG, Wu J (2014) Enhanced extracellular production of recombinant Bacillus deramificans pullulanase in Escherichia coli through induction mode optimization and a glycine feeding strategy. Biores Technol 172:174–179. https://doi.org/10.1016/j.biortech.2014.09.035

  19. Zou SP, Jiang ZT, Tang H, Cheng F, Xue YP, Zheng YG (2022) Preparation of cross-linked cell aggregates (CLCAs) of recombinant E coli harboring glutamate dehydrogenase and glucose dehydrogenase for efficient asymmetric synthesis of L-phosphinothricin. Biochem Eng J 184:108468. https://doi.org/10.1016/j.bej.2022.108468

    Article  CAS  Google Scholar 

  20. Cheng F, Li H, Zhang K, Li QH, Xie D, Xue YP, Zheng YG (2020) Tuning amino acid dehydrogenases with featured sequences for L-phosphinothricin synthesis by reductive amination. J Biotechnol 312:35–43. https://doi.org/10.1016/j.jbiotec.2020.03.001

    Article  CAS  PubMed  Google Scholar 

  21. Cheng F, Li QH, Zhang HY, Wei L, Zhang JM, Li JM, Xue YP, Zheng YG (2021) Simultaneous directed evolution of coupled enzymes for efficient asymmetric synthesis of L-phosphinothricin. Appl Environ Microbiol 87:e02563-e2620. https://doi.org/10.1128/aem.02563-20

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Fang S, Li J, Liu L, Du G, Chen J (2011) Overproduction of alkaline polygalacturonate lyase in recombinant Escherichia coli by a two-stage glycerol feeding approach. Bioresour Technol 102:10671–10678. https://doi.org/10.1016/j.biortech.2011.09.020

    Article  CAS  PubMed  Google Scholar 

  23. Chua LH, Tan SC, Liew MWO (2018) Process intensification of core streptavidin production through high-cell-density cultivation of recombinant E. coli and a temperature-based refolding method. J Biotechnol 276–277:34–41. https://doi.org/10.1016/j.jbiotec.2018.04.012

    Article  CAS  PubMed  Google Scholar 

  24. Hori C, Yamazaki T, Ribordy G, Takisawa K, Matsumoto K, Ooi T, Zinn M, Taguchi S (2019) High-cell density culture of poly(lactate-co-3-hydroxybutyrate)-producing Escherichia coli by using glucose/xylose-switching fed-batch jar fermentation. J Biosci Bioeng 127:721–725. https://doi.org/10.1016/j.jbiosc.2018.11.006

    Article  CAS  PubMed  Google Scholar 

  25. Xu JM, Zhang K, Cao HT, Li H, Cheng F, Cao CH, Xue YP, Zheng YG (2020) Development of a biocatalytic cascade for synthesis of 2-oxo-4-(hydroxymethylphosphinyl) butyric acid in one pot. Biocatal Biotransform 39:190–197. https://doi.org/10.1080/10242422.2020.1797697

    Article  CAS  Google Scholar 

  26. Duan X, Zhang X, Shen Z, Su E, Zhao L, Pei J (2019) Efficient production of aggregation prone 4-alpha-glucanotransferase by combined use of molecular chaperones and chemical chaperones in Escherichia coli. J Biotechnol 292:68–75. https://doi.org/10.1016/j.jbiotec.2019.01.014

    Article  CAS  PubMed  Google Scholar 

  27. Riesenberg D, Schulz V, Knorre WA, Pohl HD, Korz D, Sanders EA, Ross A, Deckwer WD (1991) High cell density cultivation of Escherichia coli at controlled specific growth rate. J Biotechnol 20:17–28. https://doi.org/10.1016/0168-1656(91)90032-q

    Article  CAS  PubMed  Google Scholar 

  28. Vera A, Montalban NG, Aris A, Villaverde A (2007) The conformational quality of insoluble recombinant proteins is enhanced at low growth temperatures. Biotechnol Bioeng 96:1101–1106. https://doi.org/10.1002/bit.21218

    Article  CAS  PubMed  Google Scholar 

  29. Kaur J, Kumar A, Kaur J (2018) Strategies for optimization of heterologous protein expression in E-coli: Roadblocks and reinforcements. Int J Biol Macromol 106:803–822. https://doi.org/10.1016/j.ijbiomac.2017.08.080

    Article  CAS  PubMed  Google Scholar 

  30. Dragosits M, Frascotti G, Granger LB, Vazquez F, Giuliani M, Baumann K, Carmona ER, Tokkanen J, Parrilli E, Wiebe MG, Kunert R, Maurer M, Gasser B, Sauer M, Branduardi P, Pakula T, Saloheimo M, Penttila M, Ferrer P, Tutino ML, Villaverde A, Porro D, Mattanovich D (2011) Influence of growth temperature on the production of antibody Fab fragments in different microbes: A host comparative analysis. Biotechnol Prog 27:38–46. https://doi.org/10.1002/btpr.524

    Article  CAS  PubMed  Google Scholar 

  31. Zou SP, Wang ZJ, Zhao K, Zhang B, Liu ZQ, Niu K, Zheng YG (2021) High-level production of d-pantothenic acid from glucose by fed-batch cultivation of Escherichia coli. Biotechnol Appl Biochem 68:1227–1235. https://doi.org/10.1002/bab.2044

    Article  CAS  PubMed  Google Scholar 

  32. Joachim M, Schäfer JG, Gerlach D, Czermak P (2018) High cell density cultivation of Δgor/ΔtrxB E. coli in a chemically defined minimal medium with an enhanced iron concentration. Process Biochem 73:1–5. https://doi.org/10.1016/j.procbio.2018.07.022

    Article  CAS  Google Scholar 

  33. Chi L, Wei JJ, Hou JC, Wang JY, Hu XL, He PX, Wei T (2020) Optimizing the DO-stat protocol for enhanced production of thermostable pullulanase in Escherichia coli by using oxygen control strategies. J Food Biochem 44:13173. https://doi.org/10.1111/jfbc.13173

  34. Zou SP, Zhao K, Tang H, Zhang Z, Zhang B, Liu ZQ, Zheng YG (2021) Improved production of D-pantothenic acid in Escherichia coli by integrated strain engineering and fermentation strategies. J Biotechnol 339:65–72. https://doi.org/10.1016/j.jbiotec.2021.07.014

    Article  CAS  PubMed  Google Scholar 

  35. Chen SY, Wei YH, Chang JS (2007) Repeated pH-stat fed-batch fermentation for rhamnolipid production with indigenous Pseudomonas aeruginosa S2. Appl Microbiol Biotechnol 76:67–74. https://doi.org/10.1007/s00253-007-0980-2

    Article  CAS  PubMed  Google Scholar 

  36. Jin LQ, Peng F, Liu HL, Cheng F, Jia DX, Xu JM, Zq L, Xue YP, Zheng YG (2019) Asymmetric biosynthesis of L-phosphinothricin by a novel transaminase from Pseudomonas fluorescens ZJB09-108. Process Biochem 85:60–67. https://doi.org/10.1016/j.procbio.2019.07.010

    Article  CAS  Google Scholar 

  37. Cheng F, Zhang JM, Jiang ZT, Wu XH, Xue YP, Zheng YG (2022) Development of an NAD(H)-driven biocatalytic system for asymmetric synthesis of chiral amino acids. Adv Synth Catal 364:1450–1459. https://doi.org/10.1002/adsc.202101441

    Article  CAS  Google Scholar 

  38. Zou SP, Zhong W, Xia CJ, Gu YN, Niu K, Zheng YG, Shen YC (2015) Mutagenesis breeding of high echinocandin B producing strain and further titer improvement with culture medium optimization. Bioprocess Biosyst Eng 38:1845–1854. https://doi.org/10.1007/s00449-015-1425-4

    Article  CAS  PubMed  Google Scholar 

  39. Post MJ, Levenberg S, Kaplan DL, Genovese N, Fu JA, Bryant CJ, Negowetti N, Verzijden K, Moutsatsou P (2020) Scientific, sustainability and regulatory challenges of cultured meat. Nature Food 1:403–415. https://doi.org/10.1038/s43016-020-0112-z

    Article  Google Scholar 

  40. Singh V, Haque S, Niwas R, Srivastava A, Pasupuleti M, Tripathi CKM (2017) Strategies for fermentation medium optimization: An in-depth review. Front Microbiol 7:02087. https://doi.org/10.3389/fmicb.2016.02087

    Article  Google Scholar 

  41. Wu Y, Li H, Zhang XM, Gong JS, Li H, Rao ZM, Shi JS, Xu ZH (2015) Improvement of NADPH-dependent P450-mediated biotransformation of 7alpha,15alpha-diOH-DHEA from DHEA by a dual cosubstrate-coupled system. Steroids 101:15–20. https://doi.org/10.1016/j.steroids.2015.05.005

    Article  CAS  PubMed  Google Scholar 

  42. Liao Z, Yang X, Fu H, Wang J (2019) The significance of aspartate on NAD(H) biosynthesis and ABE fermentation in Clostridium acetobutylicum ATCC 824. AMB Express 9:142. https://doi.org/10.1186/s13568-019-0874-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Knepper A, Schleicher M, Klauke M, Botz DW (2008) Enhancement of the NAD(P)(H) Pool in Saccharomyces cerevisiae. Eng Life Sci 8:381–389. https://doi.org/10.1002/elsc.200800031

    Article  CAS  Google Scholar 

  44. Moon SJ, Dong WT, Stephanopoulos GN, Sikes HD (2020) Oxidative pentose phosphate pathway and glucose anaplerosis support maintenance of mitochondrial NADPH pool under mitochondrial oxidative stress. Bioeng Translat Med 5:10184. https://doi.org/10.1002/btm2.10184

    Article  CAS  Google Scholar 

  45. Heuser F, Schroer K, Lutz S, Meyer SB, Sahm H (2007) Enhancement of the NAD(P)(H) pool in Escherichia coli for biotransformation. Eng Life Sci 7:343–353. https://doi.org/10.1002/elsc.200720203

    Article  CAS  Google Scholar 

  46. Magnani F, Mattevi A (2019) Structure and mechanisms of ROS generation by NADPH oxidases. Curr Opin Struct Biol 59:91–97. https://doi.org/10.1016/j.sbi.2019.03.001

    Article  CAS  PubMed  Google Scholar 

  47. Meng JZ, Chen FZ, Wang QY, Huang RB (2006) Recombinant alginate synthase engineering bacteria pH-stat high density fermentation process study. Sci Technol Food Indust. 27:125–128. https://doi.org/10.13386/j.issn1002-0306.2006.08.034

    Article  CAS  Google Scholar 

  48. Kim JH, Kim SW, Nguyen DQA, Li H, Kim SB, Seo YG, Yang JK, Chung IY, Kim DH, Kim CJ (2009) Production of beta-carotene by recombinant Escherichia coli with engineered whole mevalonate pathway in batch and fed-batch cultures. Biotechnol Bioprocess Eng 14:559–564. https://doi.org/10.1007/s12257-008-0230-1

    Article  CAS  Google Scholar 

  49. Blommel PG, Becker KJ, Duvnjak P, Fox BG (2007) Enhanced bacterial protein expression during auto-induction obtained by alteration of lac repressor dosage and medium composition. Biotechnol Prog 23:585–598. https://doi.org/10.1021/bp070011x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Kilikian BV, Suarez ID, Liria CW, Gombert AK (2000) Process strategies to improve heterologous protein production in Escherichia coli under lactose or IPTG induction. Process Biochem 35:1019–1025. https://doi.org/10.1016/s0032-9592(00)00137-0

    Article  CAS  Google Scholar 

  51. Dvorak P, Chrast L, Nikel PI, Fedr R, Soucek K, Sedlackova M, Chaloupkova R, deLorenzo V, Prokop Z, Damborsky J (2015) Exacerbation of substrate toxicity by IPTG in Escherichia coli BL21 (DE3) carrying a synthetic metabolic pathway. Microb Cell Fact 14:15. https://doi.org/10.1186/s12934-015-0393-3

    Article  CAS  Google Scholar 

  52. Pei XL, Wang QY, Li CL, Qiu XF, Xie KL, Huang LF, Wang AM, Zeng ZW, Xie T (2011) Efficient production of a thermophilic 2-Deoxyribose-5-Phosphate aldolase in glucose-limited fed-batch cultivations of Escherichia coli by continuous lactose induction strategy. Appl Biochem Biotechnol 165:416–425. https://doi.org/10.1007/s12010-011-9261-8

    Article  CAS  PubMed  Google Scholar 

  53. Lee C, Sun WJ, Burgess BW, Junker BH, Reddy J, Buckland BC, Greasham RL (1997) Process optimization for large-scale production of TGF-alpha-PE40 in recombinant Escherichia coli: Effect of medium composition and induction timing on protein expression. J Ind Microbiol Biotechnol 18:260–266. https://doi.org/10.1038/sj.jim.2900382

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This research/project is supported by the National Natural Science Foundation of China (NO. 21978268) and the National Key Research and Development Program of China (grant 2019YFA0905000).

Author information

Authors and Affiliations

Authors

Contributions

SZ: conceptualization, investigation, formal analysis, data curation, writing—original draft. JL: investigation, formal analysis, validation, writing—original draft. BZ: investigation, data curation. XL: investigation, data curation. ZJ: investigation, data curation. YX: writing—review and editing, funding acquisition. YZ: writing—review and editing, funding acquisition.

Corresponding author

Correspondence to Yaping Xue.

Ethics declarations

Conflict of interest

All authors have declared no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zou, S., Lu, J., Zhang, B. et al. A combination fermentation strategy for simultaneously increasing cellular NADP(H) level, biomass, and enzymatic activity of glufosinate dehydrogenase in Escherichia coli. Bioprocess Biosyst Eng 46, 867–878 (2023). https://doi.org/10.1007/s00449-023-02871-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00449-023-02871-8

Keywords

Navigation