Skip to main content
Log in

A novel antimicrobial peptide YS12 isolated from Bacillus velezensis CBSYS12 exerts anti-biofilm properties against drug-resistant bacteria

  • Research Paper
  • Published:
Bioprocess and Biosystems Engineering Aims and scope Submit manuscript

Abstract

Nowadays, the abuse of antibiotics has led to the rise of multi-drug-resistant bacteria. Antimicrobial peptides (AMPs), with broad-spectrum antimicrobial activity have attracted considerable attention as possible alternatives to traditional antibiotics. In this work, we aimed to evaluate the antimicrobial and anti-biofilm activity of an antimicrobial peptide designed as YS12 derived from Bacillus velezensis CBSYS12. The strain CBSYS12 was isolated from Korean food kimchi and purified followed by ultrafiltration and sequential chromatographic methodology. Hereafter, Tricine SDS-PAGE revealed a single protein band of around 3.3 kDa that was further confirmed in situ inhibitory activity of the gel. A similar molecular weight (~ 3348.4 Da) protein also appeared in MALDI-TOF confirming the purity and homogeneity of peptide YS12. Intriguingly, YS12 revealed a strong antimicrobial activity with a minimum inhibitory concentration (MIC) value ranging from 6 to 12 μg/ml for both Gram-positive and Gram-negative bacteria, such as E. coli, P. aeruginosa, MRSA 4–5, VRE 82, and M. smegmatis. We also determined the mode of action of the peptide against pathogenic microorganisms using different fluorescent dyes. In addition, the anti-biofilm assay demonstrated that peptide YS12 was able to inhibit biofilm formation  around 80% for both bacterial strains E. coli and P. aeruginosa at 80 µg/ml. Notably, YS12 exhibited a greater biofilm eradication activity than commercial antibiotics. In summary, our study proposed that peptide YS12 may be used as a promising therapeutic agent to overcome drug and biofilm-related infections.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Data availability

Data are available on request from the author.

References

  1. Fischbach MA, Walsh CT (2009) Antibiotics for emerging pathogens. Science 325:1089–1093

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Basak S, Singh P, Rajurkar M (2016) Multidrug-resistant extensively drug-resistant bacteria: a study. J Pathog. https://doi.org/10.3390/w12123313

    Article  PubMed  PubMed Central  Google Scholar 

  3. Serwecińska L (2020) Antimicrobials and antibiotic-resistant bacteria: a risk to the environment and to public health. Water 12:3313

    Article  Google Scholar 

  4. Rudramurthy GR, Swamy MK, Sinniah UR, Ghasemzadeh A (2016) Nanoparticles: alternatives against drug-resistant pathogenic microbes. Molecules 21:836

    Article  PubMed  PubMed Central  Google Scholar 

  5. Sang Y, Blecha F (2008) Antimicrobial peptides and bacteriocins: alternatives to traditional antibiotics. Anim Health Res Rev 9:227–235

    Article  PubMed  Google Scholar 

  6. Datta S, Roy A (2021) Antimicrobial peptides as potential therapeutic agents: a review. Int J Pept Res 27:555–577

    Article  CAS  Google Scholar 

  7. Kalelkar PP, Riddick M, García AJ (2022) Biomaterial-based antimicrobial therapies for the treatment of bacterial infections. Nat Rev Mater 7:39–54

    Article  CAS  PubMed  Google Scholar 

  8. Pasupuleti M, Schmidtchen A, Malmsten M (2012) Antimicrobial peptides: key components of the innate immune system. Crit Rev Biotechnol 32:143–171

    Article  CAS  PubMed  Google Scholar 

  9. Baindara P, Mandal SM, Chawla N, Singh PK, Pinnaka AK, Korpole S (2013) Characterization of two antimicrobial peptides produced by a halotolerant Bacillus subtilis strain SK. DU. 4 isolated from a rhizosphere soil sample. AMB Express 3:1–1

    Article  Google Scholar 

  10. Choi YH, Cho SS, Simkhada JR, Yoo JC (2012) A novel thermotolerant and acid-tolerant peptide produced by a Bacillus strain newly isolated from a fermented food (kimchi) shows activity against multidrug-resistant bacteria. Int J Antimicrob Agents 40:80–83

    Article  CAS  PubMed  Google Scholar 

  11. Cheigh HS, Park KY, Lee CY (1994) Biochemical, microbiological, and nutritional aspects of kimchi (Korean fermented vegetable products). Crit Rev Food Sci Nutr 34:175–203

    Article  CAS  PubMed  Google Scholar 

  12. Urdaci MC, Pinchuk I (2004) Antimicrobial activity of Bacillus probiotics Bacterial spore formers–probiotics and emerging applications. Norfolk, UK

    Google Scholar 

  13. Sidooski T, Brandelli A, Bertoli SL, Souza CK, Carvalho LF (2019) Physical and nutritional conditions for optimized production of bacteriocins by lactic acid bacteria–a review. Crit Rev Food Sci Nutr 59:2839–2849

    Article  CAS  PubMed  Google Scholar 

  14. El-Sersy NA, Ebrahim HA, Abou-Elela GM (2010) Response surface methodology as a tool for optimizing the production of antimicrobial agents from Bacillus licheniformis SN 2. Curr Res Bacteriol 3:1–4

    CAS  Google Scholar 

  15. Jiang Z, Vasil AI, Hale JD, Hancock RE, Vasil ML, Hodges RS (2008) Effects of net charge and the number of positively charged residues on the biological activity of amphipathic α-helical cationic antimicrobial peptides. Pept Sci 90(3):369–383

    Article  CAS  Google Scholar 

  16. Moravej H, Moravej Z, Yazdanparast M, Heiat M, Mirhosseini A, Moosazadeh Moghaddam M, Mirnejad R (2018) Antimicrobial peptides: features, action, and their resistance mechanisms in bacteria. Microbial Drug Resist 24(6):747–767

    Article  CAS  Google Scholar 

  17. Bright R, Hayles A, Wood J, Palms D, Brown T, Barker D, Vasilev K (2022) Surfaces containing sharp nanostructures enhance antibiotic efficacy. Nano Lett 22:6724

    Article  CAS  PubMed  Google Scholar 

  18. De la Fuente-Núñez C, Reffuveille F, Fernández L, Hancock RE (2013) Bacterial biofilm development as a multicellular adaptation: antibiotic resistance and new therapeutic strategies. Curr Opin 16:580–589

    Google Scholar 

  19. Frieri M, Kumar K, Boutin A (2017) Antibiotic resistance. J Infect Public Health 10:369–378

    Article  PubMed  Google Scholar 

  20. Singh S, Singh SK, Chowdhury I, Singh R (2017) Understanding the mechanism of bacterial biofilms resistance to antimicrobial agents. Open Microbiol J 11:53

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Regmi S, Choi YH, Choi YS, Kim MR, Yoo JC (2017) Antimicrobial peptide isolated from Bacillus amyloliquefaciens K14 revitalizes its use in combinatorial drug therapy. Folia Microbiol 62:127–138

    Article  CAS  Google Scholar 

  22. Rössler D, Ludwig W, Schleifer KH, Lin C, Mcgill TJ, Wisotzkey JD, Jurtshuk P Jr, Fox GE (1991) Phylogenetic diversity in the genus Bacillus as seen by 16S rRNA sequencing studies. Syst Appl Microbiol 14:266–269

    Article  PubMed  Google Scholar 

  23. Mnif I, Ellouze-Chaabouni S, Ghribi D (2013) Optimization of inocula conditions for enhanced biosurfactant production by Bacillus subtilis SPB1, in submerged culture, using Box-Behnken design. Probiotics Antimicrob Proteins 5:92–98

    Article  CAS  PubMed  Google Scholar 

  24. Gotham SM, Fryer PJ, Paterson WR (1988) The measurement of insoluble proteins using a modified Bradford assay. Anal Biochem 173:353–358

    Article  CAS  PubMed  Google Scholar 

  25. Schägger H (2006) Tricine–sds-page. Nat Protoc 1:16–22

    Article  PubMed  Google Scholar 

  26. Rahman M, Choi YH, Choi YS, Yoo JC (2017) Glycin-rich antimicrobial peptide YD1 from B. amyloliquefaciens, induced morphological alteration in and showed affinity for plasmid DNA of E. coli. AMB Express 7:1–1

    Article  Google Scholar 

  27. Ayed HB, Hmidet N, Béchet M, Chollet M, Chataigné G, Leclère V, Jacques P, Nasri M (2014) Identification and biochemical characteristics of lipopeptides from Bacillus mojavensis A21. Process Biochem 49:1699–1707

    Article  Google Scholar 

  28. Kim JS, Jeong JH, Kim Y (2017) Design, characterization, and antimicrobial activity of a novel antimicrobial peptide derived from bovine lactoferricin. J Microbiol Biotechnol 27:759–767

    Article  CAS  PubMed  Google Scholar 

  29. Mazumdar A, Haddad Y, Sur VP, Milosavljevic V, Bhowmick S, Michalkova H, Guran R, Vesely R, Moulick A (2020) Characterization and in vitro analysis of probiotic-derived peptides against multi drug resistance bacterial infections. Front Microbiol 11:1963

    Article  PubMed  PubMed Central  Google Scholar 

  30. Fontoura R, Spada JC, Silveira ST, Tsai SM, Brandelli A (2009) Purification and characterization of an antimicrobial peptide produced by Pseudomonas sp. strain 4B. World J Microbiol Biotechnol 25:205–213

    Article  CAS  Google Scholar 

  31. Han HM, Gopal R, Park Y (2016) Design and membrane-disruption mechanism of charge-enriched AMPs exhibiting cell selectivity, high-salt resistance, and anti-biofilm properties. Amino Acids 48:505–522

    Article  CAS  PubMed  Google Scholar 

  32. Ko SJ, Kim MK, Bang JK, Seo CH, Luchian T, Park Y (2017) Macropis fulvipes venom component Macropin exerts its antibacterial and anti-biofilm properties by damaging the plasma membranes of drug resistant bacteria. Sci Rep 7(1):1–4

    Article  Google Scholar 

  33. Kim MK, Kang NH, Ko SJ, Park J, Park E, Shin DW, Kim SH, Lee SA, Lee JI, Lee SH, Ha EG (2018) Antibacterial and antibiofilm activity and mode of action of magainin 2 against drug-resistant Acinetobacter baumannii. Int J Mol Sci 19(10):3041

    Article  PubMed  PubMed Central  Google Scholar 

  34. Park SC, Lee MY, Kim JY, Kim H, Jung M, Shin MK, Lee WK, Cheong GW, Lee JR, Jang MK (2019) Anti-biofilm effects of synthetic antimicrobial peptides against drug-resistant Pseudomonas aeruginosa and Staphylococcus aureus planktonic cells and biofilm. Molecules 24:4560

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Almaaytah A, Tarazi S, Al-Fandi M, Abuilhaija A, Al-shar’i N, Al-Balas Q, Abu-Awad A (2015) The design and functional characterization of the antimicrobial and antibiofilm activities of BMAP27-melittin, a rationally designed hybrid peptide. Int J Pept Res Ther 21(2):165–177

    Article  CAS  Google Scholar 

  36. Clarridge JE III (2004) Impact of 16S rRNA gene sequence analysis for identification of bacteria on clinical microbiology and infectious diseases. Clin Microbiol Rev 17:840–862

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Kang NJ, Jin HS, Lee SE, Kim HJ, Koh H, Lee DW (2020) New approaches towards the discovery and evaluation of bioactive peptides from natural resources. Crit Rev Environ Sci Technol 50:72–103

    Article  CAS  Google Scholar 

  38. Yamanaka H, Moriyoshi K, Ohmoto T, Ohe T, Sakai K (2007) Degradation of bisphenol A by Bacillus pumilus isolated from kimchi, a traditionally fermented food. Appl Biochem Biotechnol 136:39–51

    Article  CAS  PubMed  Google Scholar 

  39. Wibowo D, Zhao CX (2019) Recent achievements and perspectives for large-scale recombinant production of antimicrobial peptides. Appl Microbiol Biotechnol 103:659–671

    Article  CAS  PubMed  Google Scholar 

  40. Yang E, Fan L, Yan J, Jiang Y, Doucette C, Fillmore S, Walker B (2018) Influence of culture media, pH and temperature on growth and bacteriocin production of bacteriocinogenic lactic acid bacteria. AMB Express 8:1–4

    Article  Google Scholar 

  41. Khan MM, Kim YK, Cho SS, Jin YY, Suh JW, Lee DY, Yoo JC (2020) Response surface optimization of culture conditions for cyclic lipopeptide MS07 from Bacillus siamensis reveals diverse insights targeting antimicrobial and antibiofilm activity. Processes 8:744

    Article  CAS  Google Scholar 

  42. Singh V, Haque S, Niwas R, Srivastava A, Pasupuleti M, Tripathi C (2017) Strategies for fermentation medium optimization: an in-depth review. Front Microbiol 7:2087

    Article  PubMed  PubMed Central  Google Scholar 

  43. Zacharof MP, Coss GM, Mandale SJ, Lovitt RW (2013) Separation of lactobacilli bacteriocins from fermented broths using membranes. Process Biochem 48:1252–1261

    Article  CAS  Google Scholar 

  44. Choi YH, Cho SS, Simkhada JR, Yoo JC (2012) A novel thermotolerant and acidotolerant peptide produced by a Bacillus strain newly isolated from a fermented food (kimchi) shows activity against multidrug-resistant bacteria. Int J Antimicrob Agents 40:80–83

    Article  CAS  PubMed  Google Scholar 

  45. Pingitore EV, Salvucci E, Sesma F, Nader-Macias ME (2007) Different strategies for purification of antimicrobial peptides from lactic acid bacteria (LAB). Commun Curr Res Educ Top Trends Appl Microbiol 1:557–568

    Google Scholar 

  46. Khan MM, Kim YK, Bilkis T, Suh JW, Lee DY, Yoo JC (2020) Reduction of oxidative stress through activating the Nrf2 mediated HO-1 antioxidant efficacy signaling pathway by MS15, an antimicrobial peptide from Bacillus velezensis. Antioxidants 9:934

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. An J, Zhu W, Liu Y, Zhang X, Sun L, Hong P, Wang Y, Xu C, Xu D, Liu H (2015) Purification and characterization of a novel bacteriocin CAMT2 produced by Bacillus amyloliquefaciens isolated from marine fish Epinephelus areolatus. Food Control 51:278–282

    Article  CAS  Google Scholar 

  48. Panthi S, Choi YH, Jee JP, Cho SS, Choi YS, Pradeep GC, Yoo JC, Suh JW (2017) Antimicrobial peptide from Bacillus strain K1R exhibits ameliorative potential against vancomycin-resistant Enterococcus group of organisms. Int J Pept Res Ther 3:419–430

    Article  Google Scholar 

  49. Ayed HB, Maalej H, Hmidet N, Nasri M (2015) Isolation and biochemical characterization of a bacteriocin-like substance produced by Bacillus amyloliquefaciens An6. J Glob Antimicrob Resist Dec 3:255–261

    Article  Google Scholar 

  50. Choi YH, Cho SS, Simkhada JR, Rahman MS, Choi YS, Kim CS, Yoo JC (2017) A novel multifunctional peptide oligomer of bacitracin with possible bio-industrial and therapeutic applications from a Korean food-source Bacillus strain. PLoS ONE 12:e0176971

    Article  PubMed  PubMed Central  Google Scholar 

  51. Ramachandran R, Chalasani AG, Lal R, Roy U (2014) A broad-spectrum antimicrobial activity of Bacillus subtilis RLID 12.1. Sci World J. https://doi.org/10.1155/2014/968487

    Article  Google Scholar 

  52. Kwon JY, Kim MK, Mereuta L, Seo CH, Luchian T, Park Y (2019) Mechanism of action of antimicrobial peptide P5 truncations against Pseudomonas aeruginosa and Staphylococcus aureus. AMB Express 9:1–5

    Article  Google Scholar 

  53. Papo N, Shai Y (2003) Can we predict biological activity of antimicrobial peptides from their interactions with model phospholipid membranes? Peptides 24(11):1693–1703

    Article  CAS  PubMed  Google Scholar 

  54. Seo MD, Won HS, Kim JH, Mishig-Ochir T, Lee BJ (2012) Antimicrobial peptides for therapeutic applications: a review. Molecules 17(10):12276–12286

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Lee TH, Hall NK, Aguilar MI (2016) Antimicrobial peptide structure and mechanism of action: a focus on the role of membrane structure. Current Top Med Chem 16(1):25–39

    Article  CAS  Google Scholar 

  56. Ko SJ, Park E, Asandei A, Choi JY, Lee SC, Seo CH, Luchian T, Park Y (2020) Bee venom-derived antimicrobial peptide melectin has broad-spectrum potency, cell selectivity, and salt-resistant properties. Sci Rep 10(1):1-2.60

    Article  CAS  Google Scholar 

  57. Ko SJ, Kang NH, Kim MK, Park J, Park E, Park GH, Kang TW, Park JB, Yi YE, Jeon SH, Park Y (2019) Antibacterial and anti-biofilm activity, and mechanism of action of pleurocidin against drug resistant Staphylococcus aureus. Microb Pathog 1(127):70–78

    Article  Google Scholar 

  58. Høiby N, Bjarnsholt T, Givskov M, Molin S, Ciofu O (2010) Antibiotic resistance of bacterial biofilms. Int J Antimicrob Agents 35:322–332

    Article  PubMed  Google Scholar 

  59. Chung PY, Khanum R (2017) Antimicrobial peptides as potential anti-biofilm agents against multidrug-resistant bacteria. J Microbiol Immunol Infect 50:405–410

    Article  CAS  PubMed  Google Scholar 

  60. Pontes JT, Toledo Borges AB, Roque-Borda CA, Pavan FR (2022) Antimicrobial peptides as an alternative for the eradication of bacterial biofilms of multi-drug resistant bacteria. Pharmaceuticals 14:642

    Article  CAS  Google Scholar 

  61. Mohamed MF, Brezden A, Mohammad H, Chmielewski J, Seleem MN (2017) A short D-enantiomeric antimicrobial peptide with potent immunomodulatory and antibiofilm activity against multidrug-resistant Pseudomonas aeruginosa and Acinetobacter baumannii. Sci Rep 7:1–3

    Article  Google Scholar 

  62. Huigens RW, Richards JJ, Parise G, Ballard TE, Zeng W, Deora R, Melander C (2007) Inhibition of Pseudomonas aeruginosa biofilm formation with bromoageliferin analogues. J Am Chem Soc 129:6966–6967

    Article  CAS  PubMed  Google Scholar 

  63. Pulido D, Prats-Ejarque G, Villalba C, Albacar M, González-López JJ, Torrent M, Moussaoui M, Boix E (2016) A novel RNase 3/ECP peptide for Pseudomonas aeruginosa biofilm eradication that combines antimicrobial, lipopolysaccharide binding, and cell-agglutinating activities. Antimicrob Agents Chemother 60:6313–6322

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was sponsored by a research fund from Chosun University, 2021.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jin Cheol Yoo.

Ethics declarations

Conflict of interest

There is no conflict of interest.

Ethical approval

This study did not involve any human or animal participation.

Consent for publication

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Suchi, S.A., Nam, K.B., Kim, Y.K. et al. A novel antimicrobial peptide YS12 isolated from Bacillus velezensis CBSYS12 exerts anti-biofilm properties against drug-resistant bacteria. Bioprocess Biosyst Eng 46, 813–828 (2023). https://doi.org/10.1007/s00449-023-02864-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00449-023-02864-7

Keywords

Navigation